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Distributed computing systems (DCS) host a wide variety of enterprise applications

in dynamic and uncertain operating environments. These applications require stringent

reliability, availability, and quality of service (QoS) guarantee to maintain their service

level agreements (SLAs). Due to the growing size and complexity of DCS, an autonomic

performance management system is required to maintain SLAs of these applications.

A model-based autonomic performance management structure is developed in this dis-

sertation for applications hosted in DCS. A systematic application performance modeling

approach is introduced in this dissertation to define the dependency relationships among

the system parameters, which impact the application performance. The developed appli-

cation performance model is used by a model-based predictive controller for managing

multi-dimensional QoS objectives of the application. A distributed control structure is

also developed to provide scalability for performance management and to eliminate the

requirement of approximate behavior modeling in the hierarchical arrangement of DCS.
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A distributed monitoring system is also introduced in this dissertation to keep track

of computational resources utilization, application performance statistics, and scientific

application execution in a DCS, with minimum latency and controllable resource overhead.

The developed monitoring system is self-configuring, self-aware, and fault-tolerant. It can

also be deployed for monitoring of DCS with heterogeneous computing systems.

A configurable autonomic performance management system is developed using model-

integrated computing methodologies, which allow administrators to define the initial set-

tings of the application, QoS objectives, system components’ placement, and interaction

among these components in a graphical domain specific modeling environment. This con-

figurable performance management system facilitates reusability of the same components,

algorithms, and application performance models in different deployment settings.

Key words: Performance Management, Distributed Monitoring, Distributed Control Struc-
ture, Model Integrated Computing, and Component Based Approach.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Distributed computing systems have been used for hosting e-commerce, social net-

working, internet search services, and information broadcasting applications during the

past few decades. Additionally, these systems are now used for hosting cloud computing

services (e.g., Amazon EC2[1], Windows Azure [42], and Google Apps[15]). The grow-

ing use of applications, hosted in distributed computing systems, increases the demand to

ensure the availability, the reliability, and the quality of service (QoS) of applications in

dynamic and uncertain operating environments. Effective management in such operating

environments requires expert administrator knowledge to determine the capacity require-

ment and resource allocation based on incoming workload pattern and application behav-

ior; however, manual administration leads to poor performance and frequent outages due

to the extremely complex application dynamics and the large size of the deployment.

In general, distributed computing systems also impose consistency and synchroniza-

tion requirements over multiple computing nodes while exchanging measurements related

to system resource utilization and application performance statistics. This requires an ag-

gregate picture of the distributed systems to be available for analyzing and providing feed-

back to compute control commands by the management systems. This aggregate view can
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be constituted through an efficient distributed infrastructure monitoring system that is ex-

tensive enough to monitor system resource utilization, hardware health, and application

performance with minimum latency.

Recently, research communities and academia have been successful in designing and

developing large scale distributed systems, which address the availability, reliability, and

QoS management issues of the hosted applications without any human intervention. These

self-managing systems compute and execute management commands themselves in case

of QoS objective violations. IBM’s Autonomic Computing [4], Microsoft’s Dynamic Sys-

tems [20], HP’s Adaptive Infrastructure [17], and Intel’s Proactive Computing [18] are

some examples of ongoing industry efforts to realize these self-managing systems in fu-

ture. A class of techniques investigated by both academia and industry to build such sys-

tems rely on the use of mathematical models, which represent the system’s behavior. These

techniques include artificial intelligence (e.g., prediction, search, planning, and reinforce-

ment learning), feedback control theory, and formal models. Typically, these techniques

take corrective actions to meet the stipulated system performance objectives by using the

application measurements and the developed system model.

1.2 Challenges

Performance of a computing system and hosted application can be estimated with cer-

tain accuracy by utilizing models of the system resources and its service configurations.

These models represent the relationship among environment inputs, control inputs, current

system state, and their impact on system performance. Precise knowledge of relevant sys-
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tem parameters, their mutual dependencies, and constraints are required to develop these

system performance models; however, the development of an accurate performance model

is difficult due to the dynamic nature of the operating environment, the complex relation-

ships among system parameters (controllable and uncontrollable), and their indirect impact

on the application performance.

Another major challenge in distributed computing systems is that a wide variety of

applications are hosted in the distributed environments. These applications include stock

trading, medical infrastructure, news portal, media streaming, and storage services. These

applications are different from each other in the deployment architecture (data center or

cloud environment), environment inputs (session-based, session-less, or different arrival

pattern), monitored components (software or hardware), system performance model, and

QoS requirements. Moreover, these applications are deployed with different operational

settings and placement strategies for their components. Therefore, the development of a

single performance management system to maintain the QoS of each of these applications

in different deployment schemes is infeasible.

1.3 Research Hypothesis

The research hypothesis for this dissertation is formulated as follows. The QoS of

distributed applications can be maintained efficiently in dynamic operating environments

if a performance model of the application is applied in association with a model-based

distributed control approach and an efficient distributed monitoring system.
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This research hypothesis is based on the premise that well-established control theoretic

approaches, coupled with model-integrated computing practices, can be applied for design,

development, and maintenance of an autonomic performance management system. This

performance management system can be further used for maintaining the QoS objectives

of a general class of applications.

1.4 Research Approach

As a solution to the previously mentioned performance management issues in dis-

tributed application deployment, a generic autonomic performance management system

needs to be designed. This generic performance management system can be configured

as per the requirements of the deployed application and the operating environment. Ad-

ditionally, this configurable management system should be applicable to a large set of ap-

plications to maintain a desired performance guarantee. This management system should

also encourage reusability of the developed modules to increase the productivity of the

development process and to minimize the duplication of effort.

This dissertation is aimed to develop state-of-the-art techniques for building a generic

autonomic performance management system in order to maintain the QoS requirements of

distributed applications with limited human intervention. Another objective of this disser-

tation is to develop component-based performance management systems that improve the

ability to design, implement, maintain, and deploy an autonomic performance management

systems for large scale enterprise applications. A number of results from earlier research
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are used in developing this dissertation from following areas: Autonomic Computing, Data

Distribution Services, and Model-Integrated Computing.

Feedback control-based approach is used to develop an autonomic performance man-

agement system, which can be deployed with the developed application performance model.

In this case, the control changes can be verified on the developed performance model be-

fore applying them to the actual system.

Data distribution services (DDS) is a middleware communication standard for real-time

systems. It overcomes the typical shortcomings of a traditional client-server model, where

clients and servers are coupled together for data exchanges. DDS gives complete control of

data to the application developers by providing an extensive list of QoS configurations in

the data. It provides scalability in size of the distributed system for monitoring and ensures

minimum resource overhead with maximum bandwidth utilization while exchanging the

measurements among computing nodes.

Model-integrated computing techniques and tools are used in this dissertation to de-

velop formal models for each component of the developed performance management sys-

tem. These models are further utilized during the system development process to capture

the service requirements, deployment configurations, and environment dynamics. Model-

integrated computing tools are utilized to develop a semi-automatic procedure for gen-

erating the deployment plan for the performance management system according to the

application deployment configurations.
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1.5 Contributions of the Dissertation

This dissertation is focused on developing a model-based autonomic performance man-

agement system for enterprise applications hosted in distributed computing environments.

The key research contributions of this dissertation are as follows.

A systematic approach is introduced to create performance models for distributed multi-

tier enterprise applications as part of this research. This approach identifies the system

parameters through extensive experimentation, defines the relationship among these pa-

rameters, and identifies the underlying model structure of the system. The developed per-

formance model is further utilized by a model-based predictive controller for the autonomic

performance management of the deployed application.

A distributed monitoring system “RFDMon” is developed for monitoring system re-

sources (e.g., CPU, memory, disk, network channels), system health (e.g., temperature and

voltage of motherboard and CPU core), application performance statistics (response time,

queue size, and throughput), and scientific application execution state with minimum la-

tency and controllable system resource overhead. This monitoring system can be deployed

for monitoring of distributed infrastructure with heterogeneous computing systems.

A distributed control-based performance management approach is developed for man-

aging a general class of applications hosted in distributed environment. In this approach,

the infrastructure level performance management problem is solved by decomposing the

overall control problem into various different local control problems of managing the ap-

plication instances at each computing node through node level controllers, while satisfying

the constraints posed by the controller working at immediate higher level. This approach
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provides scalability in size of the infrastructure and eliminates the requirement of approx-

imate behavior modeling of lower level controllers in case of hierarchical deployment.

A component-based distributed control approach is developed in this dissertation by

using model-integrated computing methods. This component-based implementation can

be applied to a large set of distributed applications after defining the initial settings of the

application, the multi-dimensional QoS objectives, the application performance models,

the components’ placement, and interaction among these components. Component-based

implementation eliminates the need of applications specific development of performance

management systems.

1.6 Scope and Limitations

A component-based autonomic performance management system is developed during

this research for maintaining the SLAs of distributed enterprise applications in dynamic

operating environment. To develop this management system, this dissertation is focused

on these specific areas:

• The development of performance models of the multi-tier enterprise applications that
can be updated dynamically in the actual production environment.

• The development of a non-intrusive power consumption model that estimates power
consumption of the multi-core system with high accuracy by using the hosted appli-
cation characteristics and utilization of relevant system resource.

• The development of a model-based predictive controller that can utilize these appli-
cation performance and power consumption models to compute the optimal values
of control inputs for maintaining the SLAs of the hosted application with minimum
operating cost.

• The development of a distributed monitoring system that can be utilized for compre-
hensive monitoring of the resource utilization and application performance statistics
at each computing node in a distributed infrastructure. This monitoring system can
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also be used for monitoring the execution state of a scientific application in a cluster
or grid environment.

• The development of a distributed control approach that can utilize the measurements
collected through the distributed monitoring system to maintain the SLAs of the web
service applications instances at each computing while minimizing the operating cost
of the entire infrastructure.

• The development of a configurable distributed control structure where an adminis-
trator can define the SLAs of the deployed distributed application, initial settings,
and interaction among the components of the distributed control structure.

The applicability and performance of the contributions of this research are demon-

strated by applying it on a distributed multi-tier web service deployment. The developed

models, monitoring system, and control structures are tested in the academic lab environ-

ment for managing a multi-tier web service deployment with different settings. However,

due to the scalable nature of the developed monitoring system and distributed control ap-

proach, the performance management system can be easily applied to the large scale dis-

tributed computing systems in production environment after making appropriate configu-

rations. Moreover, the generic and customizable nature of the developed component-based

management system makes it a candidate for other domains as well, such as cloud com-

puting and big data analysis platforms.

1.7 Dissertation Organization

The remainder of the dissertation is organized as follows:

A detailed introduction of autonomic computing systems, web service architecture, and

model-integrated computing are presented in Chapter 2. This chapter also highlights earlier

research efforts of academia and industry in developing physical server power consump-
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tion management techniques and component-based performance management solutions for

distributed computing systems.

A systematic approach for developing performance models of multi-tier applications

is presented in Chapter 3. This chapter covers the previous research efforts in developing

application performance models, basic concepts of queueing theory, and Kalman filters to

understand the developed approach. Moreover, the physical system power consumption

and http request characteristic modeling efforts of the dissertation are highlighted in this

chapter. A set of experiments are also discussed in this chapter to demonstrate the accuracy

of the developed performance model and to investigate the impact of variation in system

parameter values on the application performance.

Applicability of the developed performance model is presented in Chapter 4. A model-

based predictive controller uses the developed application performance model to manage

QoS objectives of the deployed application while minimizing the power consumption of the

physical server. This chapter also presents earlier research efforts in managing performance

of the deployed multi-tier applications using model-based control approaches.

Architecture of a real-time and fault-tolerant distributed monitoring system is presented

in Chapter 5. This monitoring system was developed during this research in order to mon-

itor the computing nodes of the distributed infrastructure with minimum latency at a pre-

specified interval. Additionally, this chapter also provides a brief introduction of publish-

subscribe communication mechanism, data distribution services, ARINC-653 concepts,

and ruby on rails web service development framework. Moreover, some industry-wide
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popular distributed monitoring products are compared with the monitoring system devel-

oped in this dissertation.

A novel distributed control structure for performance management of distributed ap-

plications is presented in Chapter 6. This chapter also discusses earlier research for man-

aging applications deployed in distributed systems by using traditional control theoretic

approaches. Experimental results are also presented to demonstrate the efficiency of the

developed distributed control structure and its fault-tolerant properties.

A component-based implementation of the distributed control structure (developed in

Chapter 6) is introduced in Chapter 7. This semi-automatic approach for the deployment

of the distributed control structure uses model-integrated computing (MIC) tools. This

chapter briefly discusses MIC tools (“GME” and “UDM”) and their applicability in devel-

opment of the component-based performance management system.

Finally, conclusions and the research contributions are summarized in Chapter 8. Ad-

ditionally, a proposed direction for future research to extend this dissertation is discussed

in this chapter.

10
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

Distributed computing systems are difficult to manage due to large infrastructure size,

system complexity, dynamic operating environments, and multi-dimensional QoS objec-

tives. Autonomic computing [98] empowers researchers to deal with these management

challenges by employing formal mathematical techniques derived from biological systems.

Autonomic computing aims to introduce the self-management characteristics (e.g., self-

configuration, self-optimizing, self-protections, and self-healing) in computing systems to

maintain performance objectives of the hosted application.

Distributed computing systems are used to host a wide range of applications for e-

commerce, health infrastructure, telecommunication, real-time systems, parallel scientific

computing, and networking applications. Each of these computing systems consist of a

large number of components, which interact with each other for common system wide

objectives. Therefore, various component-based performance management solutions have

been developed for performance management of these computing systems.

This chapter introduces the basic concepts and earlier research efforts in developing

an autonomic performance management system for applications hosted in a distributed

environment. These concepts are described in following subsections.
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2.1 Autonomic Computing

Autonomic computing systems are inspired from the self-management features of the

human nervous system, which monitors a large number of parameters inside and outside

the body, analyzes the impact of changes in these parameters, and counters these changes

with an appropriate response if necessary. These parameters include glucose concentration

in the blood, blood pressure, body temperature, heart rate, breathing, etc. Moreover, the

nervous system also classifies these parameters into different categories of urgency based

on their impact on the survivability of the organism [120]. Changes in these parameters

are countered by the nervous system to keep their values in the normal range for surviv-

ability of the body. These monitoring, analysis, and reaction are part of self-management

activities, which do not require any human notice or intervention.

The Autonomic Computing vision was presented by Kephart et. al in 2003 [98]. The

authors of vision document argued that computing systems should manage themselves ac-

cording to the system level objectives specified by the human administrators. In addition,

systems should perform the regular maintenance and optimization tasks without any hu-

man intervention. The authors further added that these systems should also be able to

integrate the new components in the system smoothly without any glitches. This vision

emphasized that autonomic computing is the only viable way to tackle the rapidly increas-

ing complexity and size of computing systems while keeping the total cost of the own-

ership at a manageable level with limited administrator skills. According to IBM White

paper in 2002 [87], a computing system can be considered autonomic only after completing

five stages of system management: Basic, Managed, Predictive, Adaptive, and Autonomic.
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These stages correspond to the level of computing system for self-management character-

istics of autonomic computing, such as self-configuring, self-optimizing, self-protecting,

and self-healing.

In the past decade, list of autonomic characteristics has been extended with a large

number of new properties [140]: self-anticipating, self-assembling, self-adapting, self-

diagnosing, self-defining, self-governing, self-installing, self-reflecting, self-planning, self-

learning, self-organizing, and self-simulating.

2.1.1 Architecture of Autonomic Computing

According to the vision document [98], autonomic computing systems are composed

of multiple autonomic elements (AEs). An AE operates according to the pre-specified poli-

cies of the system and provides desired computational services to the other AEs connected

to itself. Each of these AEs manages a system element, such as computational resources,

networking resources, storage resources, etc. A typical autonomic control loop “MAPE-K”

is shown in Figure 2.1 [2].

In the “MAPE-K” system described in [2], an autonomic computing functionality is

achieved through control loops, which consist of Monitor, Analyze, Plan, Execute, and

Knowledge components. In the MAPE-K autonomic loop, the managed system repre-

sent a system component (e.g., system resource, web server, cluster of computing nodes,

and software) under observation. The managed system is coupled with the autonomic

manager through measurement sensors and system actuators. Sensors monitor the system

parameters and publish the measurements to an autonomic manager, while Actuators per-
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Figure 2.1

Autonomic Manager Control Loop (MAPE-K).

form changes in settings or configuration of a system component. The Monitor collects

the measurements from the managed element through Sensors, filters the useful measure-

ments, aggregates the measurements to determine the current symptom of the managed

system, and forward it to the Analyze component. The Analyze component determines

if the managed system is complying with the system performance objectives. In case of

an objective violation (or violation expected in near future), the Analyze component de-

termines the changes needed in the managed element and sends these change requests to

the Plan component. The Plan component creates or selects the procedure to enact the

changes in the managed system as suggested by the Analyze component. The Plan com-

ponent generates a set of changes in the managed element and forwards it to the Execute

component. The Execute component provides the mechanism to execute the changes on
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the managed system by actuators. Additionally, it updates the stored system knowledge

that will be used by the autonomic managers. The Knowledge component is a repository

of usual system behavior, business policies, and system performance models.

2.1.2 Development of Autonomic Computing Systems

Autonomic computing systems are designed by using techniques derived from formal,

mathematical, and biological systems. These techniques include artificial intelligence,

feedback control, formal models, and bio-inspired algorithms. Major research efforts of

academia and industry for the development of autonomic computing systems can be sum-

marized in following categories:

2.1.2.1 Artificial Intelligence (AI) Based Techniques

Several autonomic computing technologies and approaches are based on concepts and

techniques derived from AI for developing an automated decision making module. AI

techniques can be used to design an intelligent agent that can understand, predict, and act

based upon changes in the environment. This intelligent agent selects actions (based on

previous history) that are expected to maximize agent’s objectives [130]. A framework

called Clockwork [128] was introduced in 2003 for predicting future loads by using an

autoregressive integrated moving average (ARIMA) filter in a file sharing scenario over

distributed computing systems. This research demonstrated the feasibility of using a pre-

dictive technique that uses past events to learn about future loads and to determine the

appropriate assignment of incoming loads for load balancing in file sharing systems.

15



www.manaraa.com

Automated Planning is a branch of artificial intelligence that investigates action se-

quences performed by intelligent agents aiming to drive themselves from an initial state

to a final state while considering a predefined set of constraints. In static (or known) en-

vironments, planning is performed by using environment models and an agent’s goal. In

dynamic environments, planning is performed by using dynamic models of the environ-

ment, variable policies in possible situations, and possible plans to determine a single plan

or a set of plans [129]. CHAMPS [96] and ABLE [61] are two planning-based autonomic

computing systems, which provide support to system administrators for automating the

configuration process in an IT infrastructure.

Reinforcement learning (RL) is another technique that is used frequently in AI, where

an intelligent agent can associate its action with a corresponding reward. The use of RL

for automatic learning of management policies are presented in [141, 142], where an un-

derlying system aims for resource allocation in the computing systems. The authors have

performed a series of approximations to reduce the state-space size to apply RL algorithms

in trading applications.

2.1.2.2 Control Theory Based Techniques

One of the main objectives of an autonomic computing system is to optimize the sys-

tem behavior through configuring the managed system in real time. Existing approaches

from feedback-based control theory can be utilized to achieve these objectives due to the

presence of a feedback loop in an autonomic computing architecture (see Figure 2.1). Per-

formance management of distributed computing systems can be automated using control
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theory concepts, which can provide substantial improvement compared to rule-based and

heuristic-based approaches. Control theory provides a systematic way to solve dynamic

resource provisioning problems by using basic control concepts and verify the applicabil-

ity of these solutions before its actual application to the system deployed in the production

environment [127]. For this purpose, a system model is required to identify the relationship

between input and output variables of the system for a specific system setting.

Researchers have applied classical feedback control theory in developing performance

management solutions for computational resource intensive applications. These approaches

continuously monitor the application service level agreements (SLAs) and take appropri-

ate actions in the case of (or possibility of) SLA violations in the near future. These tech-

niques have been applied to applications related to different domains, such as CPU power

management [103], task scheduling [64], file server load balancing [111], and bandwidth

allocation in web servers [53, 48].

In more complex subsystems, inflexible feedback maps and pre-specified resource allo-

cation plans do not accommodate the changing resource requirements due to an extremely

dynamic operating environment. Additionally, classical feedback control is not suitable for

non-linear and hybrid computing systems, which have complex dynamics and potentially

use a finite set of control options. As a result, researchers have developed advanced state-

space methods derived from model predictive control [112] and limited lookahead super-

visory control [66] for managing these complex applications. These advanced approaches

provide a framework, which solves multi-dimensional non-linear objective functions by

using finite control input sets in a dynamic operating environment while maintaining the
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application SLAs. A detailed survey of feedback control based autonomic computing ap-

proaches is presented in [86].

2.1.2.3 Bio-inspired Techniques

Autonomic computing systems are expected to maintain their operation even in the

case of a changing workload, environment configurations, system goals, and hardware or

software faults by monitoring various system resources and performance objectives. Ad-

ditionally, these autonomic computing systems should be able to update their protection

capabilities for future threats and be able to roll back to a previous state if these updates

are not suitable for the safe system operation. Bio-inspired computing enables researches

to look at biological organizations (natural models) for inspiration while adapting and im-

proving it with help of the advancement in computing system technology [82]. Various

performance management, intrusion detection, policy management, and network routing

issues have been solved using bioinspired algorithms in computer science. These algo-

rithms are inspired from natural elements (e.g., ant, bees, termites, flocks of birds, and

human antibodies), which show self-adaptive and emergent nature by combining the inter-

actions among thousands of individuals to achieve common system objectives.

The analogy between autonomic computing systems and biology has been used for the

development of future unmanned aerial systems, where multiple pico-class swarm space

crafts will be sent for asteroid missions from NASA [144]. Each one of these small swarms

will carry the model of the work it is supposed to perform. Each of them will record the

measurements and forward these measurements to the ruler element of the group. The
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ruler element will choose the type of asteroid and measurement for further coordination

among the swarms. Another bio-inspired approach was used in a hierarchical policy based

management system (PBMS) for developing an autonomic communication system [58].

This system utilized the ability of a cell to recognize other similar cells to form a tissue and

to maintain the equilibrium through self-management capabilities. The developed PBMS

was applied to a communication system network, where multiple communication nodes

(routers) join the infrastructure dynamically and comply with the overall infrastructure

business policy while performing the assigned work of data forwarding.

Issues of intrusion detection in computing systems are also solved successfully through

various bio-inspired approaches, which adaptively learn the differences between safe and

unsafe system states or network traffic patterns. These approaches select the appropriate

corrective measures for a system based on the biological rules in the nature. The nat-

ural immune system is inherently diverse, distributed, error tolerant, dynamic, adaptive,

and self-protecting in behavior, which makes it suitable for designing an efficient network

intrusion detection system [83]. The natural immune system based intrusion detection ap-

proaches were presented in [83, 60] where abnormal behavior were considered as intrusion

into the system. Genetics-based machine learning approaches for intrusion detection were

used for learning the classification of normal and abnormal behavior [137, 68]. A genetic

algorithm and decision tree based approach was used in order to generate the rules for clas-

sifying the incoming network connections as normal or abnormal [137]. In this approach,

genetic algorithm and decision trees were used to evolve the rules by matching the patterns

of attribute values (e.g., source IP address, source IP port, destination IP address, destina-
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tion IP port, and network protocol) as normal and abnormal patterns. A detailed survey of

various bio-inspired intrusion detection techniques is available in [134].

2.1.2.4 Dissertation Contribution

In general, AI techniques require significant computation to learn the system perfor-

mance model and to compute the appropriate control parameters for maintaining the de-

sired performance guarantee of the computing systems in dynamic operating environments.

These large computations also require availability of significant amount of computational

resources to the management system. Therefore, AI techniques are not well-suited for ap-

plying in real-time production environment, where the management system is required to

react on the changes in the operating environment in strict time constraints with limited

amount of system resources available to the management system. Similarly, the natu-

ral models used in bio-inspired techniques, take a large number of iterations for deriving

(emerging) the optimal solutions for the managed system. In addition, natural models

are too specific to capture the performance behavior of a general class of applications for

solving performance management issues. Moreover, it is difficult to accommodate the op-

erating and state constraints in the AI and bio-inspired techniques while computing the

control commands. In addition, the techniques utilized in management system, should also

be able to take (or compute) control action at the same rate as rate of change in the oper-

ating environment; however, AI and bio-inspired techniques require a large computation

time in a certain cases to compute the appropriate control command.
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In contrast to the AI and bio-inspired techniques, the model-based feedback control

techniques are well-suited for applying in real-time production environment. The primary

benefits of using model-based feedback control approach is that the computational over-

head and system resource utilization, during computation of control commands, can be

managed (increased or decreased) by using application performance models of varying

complexity. Furthermore, the state and operating constraints of the managed application

and underlying system can also be accommodated in the developed control technique eas-

ily. Therefore, an autonomic model-based performance management system is developed

in this dissertation by using model-based control theoretic approaches, which utilize a

mathematical performance model of the managed web service. This performance manage-

ment system has following autonomic computing characteristics:

1. Self-configuring with respect to the number of nodes under consideration for moni-
toring and managing the QoS objectives.

2. Self-optimizing with respect to the system performance by appropriately choosing
the controlled parameters for maintaining the system performance according to de-
sired QoS specifications.

2.1.3 Autonomic Computing Projects

In past decades, industry and academia have developed a number of advanced prod-

ucts and prototypes, which demonstrate some of the autonomic computing characteristics.

Some of these widely known products are listed below:

1. OceanStore [151] (University of California, Berkeley): This project developed a
global persistent data storage, where any computer can join the infrastructure through
service providers. Service providers can purchase the storage as and when necessary.
It creates local replica of stored data on servers that localizes access traffic to reduce
network congestion. In addition to this, it pro-actively transfers data to maintain
high availability in outages and malicious attacks. OceanStore demonstrates the self-
healing and self-optimization features of autonomic computing.
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2. Computer Operations, Audit, and Security Technology (COAST) [6] (Purdue Univer-
sity): It is a combination of multiple security projects that includes the development
of an agent-based intrusion detection system, audit trails, vulnerability logs, and a
security archive for self-protection.

3. Automate [54] (Rutgers university): This project is an enhancement of already ex-
isting grid middleware to support context aware grid applications, which have au-
tonomic computing properties. In this project, applications are developed as com-
position of autonomic components over Open Grid Service Architecture [30]. This
project focuses on self-configuring, self-optimizing, and self-adapting features.

4. Autonomia [71] (University of Arizona): This project provides various tools to ap-
plication developers for specification of application attributes (e.g., performance,
fault, and security) and software or hardware resources. Application developers
can also configure online monitoring systems and middleware services to add au-
tonomic properties in network services. This project demonstrates self-configuring,
self-deploying, and self-healing properties by configuring management schemes.

5. Storage Tank [116] (IBM Research): This project designs a distributed storage man-
agement system that provides access to meta-data of the stored data first and then
direct access to data using high speed networks. This project focuses on resource
optimization, data consistency, policy based storage, checkpoint-based recovery, and
self-healing in distributed storage systems.

6. Q-Fabric [122] (Georgia Institute of Technology): This project developed cooperat-
ing OS-level components that manage resource allocation to the multimedia applica-
tions for minimal jitter and best achievable image quality. It creates event channels
to set up communication between the monitors and the management modules for re-
source management. This project focuses on self-organization and self-optmization
features only.

7. SMART (DB2) [110] (IBM Research): This project focuses on making IBM DB2
database self-managing for reducing the total cost of ownership by minimizing ad-
ministrator efforts during database design, deployment, maintenance, fault detection,
and recovery. In long term, SMART will cooperate with other IBM components of
the system (e.g., IBM Websphere Application Server [41]) in order to develop a
complete autonomic system.

8. Sabio [123] (IBM Research): It is a knowledge management software that classi-
fies large data files by using neural network and uses this classification for self-
organization features in data files.

9. SUN-N1 [35] (SUN Microsystems): SUN N1 range of products automate the provi-
sioning of computation, networking, and storage resources as per the demands from
the service and pre-specified business policies. These products support automatic
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recovery from server failure. Additionally, these products perform auto-discovery of
servers, monitor server health, maximize server utilization, and collect event logs.

10. Neuromation [25] (Edinburgh University): In this project, algorithms are developed
to structure data based on the concepts and thoughts behind generating the data by
using simple autonomous units. This structuring of data is independent from the
application, which is using this data. In this project, each piece of the information is
stored as thoughts; thoughts are connected together by using developed proprietary
algorithms for storage.

11. ebiquity [11] (University of Maryland): In this project, computing systems are cre-
ated with cooperation from dynamic, adaptive and autonomous components. These
components become aware of each other for data communication, information ex-
change, and cooperation to complete their individual and global task.

12. Auto Admin [3] (Microsoft Research): The primary focus of this project is to create
a large scale self-tuning and self-administering database that monitors the applica-
tion’s resource requirements in order to decrease the total cost of ownership. In this
research, a database tracks application and auto tunes itself to complete workload re-
quirements posed by the application. This project also develops database monitoring
tools, which have minimum CPU and memory overhead.

The above mentioned research projects introduce various autonomic characteristics for

specific type of systems and hosted applications. These projects can not be generalized

or extended for maintaining a general class of systems even after reconfigurations. There-

fore, in this dissertation, an autonomic performance management approach is developed

in a very generic manner for maintaining the performance objectives of the deployed in-

frastructure and hosted applications by redefining and reconfiguring the developed perfor-

mance management approach. This dissertation makes a number of novel contributions

compared to the projects surveyed in this subsection:

• The developed performance management system can be customized according to
the target application requirements and deployment architectures by using model-
integrated computing practices.

• The developed performance management system can be extended by adding new
measurement sensors, actuators, estimators, performance parameters, and optimiza-
tion algorithms in the component library.
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• The developed distributed control approach can be applied to a general class of ap-
plications hosted in distributed environment for managing QoS objectives.

• The developed performance management system provides scalability for managing
QoS of applications hosted in distributed computing environment.

• The developed performance management system provides fault isolation among its
components and reduces computational resource overhead through avionics operat-
ing system specifications.

2.2 Introduction to Web Services

According to World Wide Web Consortium (W3C) [39], a web service is a software

system, which is represented by a uniform resource identifier (URI). Its public interface,

interactions and bindings are well-defined to support interaction with other computing sys-

tems over the network. A web service interacts with other software systems in a well-

defined manner as prescribed in its definition through Web Services Description Language

(WSDL). WSDL version 2.0 [40] defines a standard language (XML based) for describing

the functionality, concrete details, and compliance of the web service. WSDL separates

the description of the web service from its implementation and location details.

2.2.1 Web Service Architecture

A number of computing systems (or applications) are using web services to interact

with other computing systems (or applications) due to the standard interfaces and sup-

port of interoperability among computing system platforms. A web service is described

with standard XML notation, which contains all the required details for interacting with

the service, messaging format, transport protocols, and address. Only interface details are

expressed while implementation details remain hidden, which makes web service indepen-
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Figure 2.2

Service Oriented Architecture of Web Services.

dent of the underlying platform and programming language. Multiple web services can be

combined together in a logical manner to create a complex application or business service.

A typical web service architecture is shown in Figure 2.2. In Figure 2.2, the nodes of

the triangle represent roles and the edges represent operations performed by those roles.

This web service architecture describes interaction among three roles: Service Provider,

Service Requester, and Discovery Agent. According to Figure 2.2, the Service Provider

hosts a internet (network) accessible web service and publishes its description to the Ser-

vice Requester and Discovery Agencies. The service description consists of the structure

definition, data types, message exchange patterns, and location of the Service Provider.

The Service Requester performs the find operation to get the service definition locally or

from the Discovery Agencies. The Service Requester uses this service definition to bind to

the Service Provider and initiate interaction with the web service (software module). The
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Service Requester and Service Provider communicates with each other through a sequence

of one or more messages.

2.2.2 Service-Level Agreement for Web Services

In this highly competitive world, a Service-Level Agreement (SLA) is the primary

feature to compare the QoS provided from different service providers to the customers they

pay for. An SLA between a service provider and its customer can be defined as “expected

performance behavior of the deployed web service with respect to measurable performance

matrices under the pre-specified operating conditions.” An SLA provides common mutual

understanding and expectation of web service performance to service providers and their

customers. In general, these SLA performance metrics include average response time,

throughput, and availability of the service. Failure in meeting these SLA specifications

may result in heavy penalties for the service provider. Moreover, the same service can be

provided to different customers with different SLAs due to different pricing strategies.

Figure 2.3

Service Level Agreement Life Cycle.
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An SLA is important factor in negotiating a contract between service provider and

customer during the deployment of the web service. It provides service-level assurance to

the customers, a benchmark to provision system resources for a deployed web service, and

a revenue model to the service providers. Each SLA passes through various stages of the

SLA life cycle [57] as shown in Figure 2.3 [34].

Similar to a programming language, Service Level Agreement Language (SLAL) [81]

provides a standard format to express the SLAs in terms of requirements, objectives, func-

tions, penalties, and restrictions. SLAL is based on XML schema and is interpreted by both

the service providers and the customers to deploy, monitor, and take appropriate actions on

the web service.

2.2.3 Web Service Used in Dissertation

In this dissertation, a multi-tier web service, “Daytrader” [9] is utilized as a representa-

tive application. The Daytrader application is an online stock trading system that allows its

users to login through a client utility or web browser to monitor their portfolios and buy or

sell stocks. This application was developed at IBM research and has been utilized as per-

formance benchmark application in the research community. Daytrader is built using J2EE

technology, Java database connectivity (JDBC) for database access, and Java Beans for

business logic. In this dissertation, daytrader is hosted on IBM’s J2EE middleware, Web

Sphere Application Server Community Edition (WASCE) [41]. More details on Daytrader

will be provided in following chapters.
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2.3 Power Consumption in Computing Systems

Most modern electronic components are built using the Complementary Metal Oxide

Semiconductor (CMOS) technology. Advances made in the last decade have led to the

increased clock rates and narrower feature length of the CMOS transistor. This in turn has

allowed chip developers to stack more transistors on the die, which increases the available

computational power. However, these advancements have come at the cost of increased

power consumption.

At the level of a transistor, power consumption can be attributed to three factors:

switching (dynamic) power consumption, leakage (static) current power consumption, and

short circuit power consumption. These factors are applicable to all electronic systems of

the computer, including the CPU, memory, and even the hard drive 1.

The working principle of a CMOS Field Effect Transistor (MOSFET) is based upon

modulation of the electric charge stored by the capacitance between the gate and the body

of the transistor [121]. This capacitor actually charges and discharges during one cycle

(i.e., turning the switch first on and then off). Effectively, this causes an extra consumption

of power, which is used for charging the capacitor. This power loss is also called switching

or dynamic loss.

Leakage (static) current power consumption is due to the leakage current flowing through

the transistor while being in the OFF state. Previously, static power consumption was neg-

ligible due to the low number of transistors per inch and high resistance of wires used on

the chip. Currently, power loss due to the leakage current is about 40% of the total power

1In the hard drive, there are also some other mechanical factors that lead to increased power consumption,
which are out of scope of this dissertation
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consumption [125]. Lowering the voltage across the chip increases the leakage current by

making transistors too leaky, which in turn increases the power consumption of the micro-

processor [121]. Additionally, the high operating temperature of microprocessor increases

the leakage current power consumption significantly.

A small amount of power consumption is present in CMOS due to the short circuit

current on the short circuit path between the supply rails and the ground. This power

consumption is considered as short circuit power consumption.

Dynamic power loss has been the main component of the total power loss for a long

time in the past. Lately, the percentage of static power loss is increasing as feature sizes

have been decreasing.

2.3.1 Power Consumption Modeling

A non-intrusive but accurate real time power consumption modeling effort is described

in [76] to generate a power model with help of AC power measurements and user level

utilization metrics. A microprocessor level power consumption estimation technique first

examines the hardware performance counters and then uses relevant counters to estimate

the power consumption through sampling based approaches [88]. Another approach for

generating hard disk power consumption model is developed by extracting the performance

information from the hard disk itself and by predicting the power model [157]. Addition-

ally, the authors show that the modeling of idle periods is an important step in predicting

the power consumption model of a hard disk.
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An approach for power consumption modeling in an embedded multimedia applica-

tion is introduced, where power consumption behavior is predicted by taking various im-

age, speech, and video coding algorithms into account with supplied frequency and volt-

age [85]. A highly scalable power modeling approach is described in [91] for high perfor-

mance computing systems by linearly extrapolating the power consumed in a single node to

a complete large scale system by using various electrical equipment. A micro-architecture

level temperature, voltage aware performance, and leakage current power modeling ap-

proach is introduced in [108]. This approach demonstrates variation of leakage current and

energy consumption with varying temperature. Another approach for estimating power

consumption in embedded systems is presented in [117], where power consumption is es-

timated during execution of a software application by considering the pipeline stall, inter-

instructions effect, and cache misses. A power consumption model for smart phones is

developed by utilizing measurements from built-in voltage sensors inside the battery and

its discharge behavior [104]. Another approach of CMOS power short circuit dissipation

is presented in [62], when short circuit power dissipation represents the significant amount

of power consumption in a specific settings.

A computing system contains a large number of power consuming devices as discussed

in the previous subsections. It is extremely difficult task to collect accurate measurements

from all of these devices and to estimate their non-linear impact on the overall power con-

sumption of the system for developing a performance management system. Therefore, a

non intrusive power consumption modeling technique is used in this dissertation to estimate

power consumption inside a computing system by using the system resource consumption
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only. In this technique, an electronic Watt meter [38] is attached between the comput-

ing system power supply and electrical power socket to measure the power drawn by the

computing system during its operation. Next, the computing system is put under a test by

executing a set of experiments, which results in increased or decreased utilization of var-

ious system resources. According to the nature (computation, memory, or disk access) of

experiments, corresponding system resource utilization measurement is recorded. Finally,

a look-up table with near neighbor interpolation map is created with relevant resource uti-

lization as the “key” and power consumption as the “value.” This map is then validated by

using a different set of tests with different utilization pattern of the same resource.

The primary benefit of the power modeling technique used in this research is that it

is very simple but estimates the power consumption with high accuracy. The experiments

discussed in next few chapters of this dissertation utilize this technique to model the power

consumption of a multi-core physical server based on CPU core frequency and CPU uti-

lization values. More details and observations of power modeling effort of this dissertation

is described in Section 3.4.1.

2.3.2 Power Management Techniques

2.3.2.1 CPU Power Management

The main focus of academia and industry has been targeted at the power consumption

of microprocessors. Three methods have been proposed till date to control the power

consumption in microprocessors through application and system level techniques: dynamic
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power switching (DPS), standby leakage management (SLM), and dynamic voltage and

frequency scaling (DVFS).

The dynamic power switching (DPS) approach tries to maximize the system idle time

that in turn forces a processor to make transition to idle or low power mode for reducing

the power consumption [121]. The only concern is to keep track of the wakeup latency

for the processor. The processor tries to finish the assigned tasks as quickly as possible so

that the rest of the time can be considered as idle time of the processor. It reduces leakage

current power consumption while increasing the dynamic power consumption due to the

excessive mode switching of the processor.

The standby leakage management (SLM) technique is close to the strategy used in

DPS by keeping the system in low power mode [121]. However, this strategy comes in

to the effect when there is no application running in the system and when the processor

needs to take care of its responsiveness only toward user related wake up events (e.g., GUI

interaction, key press, or mouse clicks).

In contrast to the DPS, in the dynamic voltage and frequency scaling (DVFS) method,

the voltage across the chip and the clock frequency of the transistor are varied (increased

or decreased), to lower the power consumption and maintain the processing speed at the

same time [121]. This method is helpful in preventing the processor from overheating,

which can result in a system crash. However, the applied voltage should be kept at the

level suggested by the manufacturer to keep the system stable for safe operation. DVFS

reduces processor idle time by lowering the voltage or frequency, while continuing to pro-
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cess the assigned task in a stipulated time with minimum possible power consumption.

This approach reduces the dynamic power loss in the processors.

2.3.2.2 RAM Power Management

In general, the CPU is considered as the dominant component for power consumption

in a computing system. However, recent research [70, 115] revealed that RAM can also be

a significant contributor to the system power consumption. Therefore, RAM should also

be a target for managing the power consumption, especially in the case of small computers.

Currently, memory chips with multiple power modes (e.g., active, standby, nap, and power

down) are available in the market and can be used for designing an efficient memory power

management technique. The primary idea behind multiple modes of memory operation is

that a different amount of power is consumed inside a memory in different states. Memory

can execute a transaction only in the active state but can store the data in all of the states.

The only concern while utilizing multiple modes is to consider the latency in time and

power consumption while switching the modes. Similar to CPU power management, there

are primarily two approaches for memory power management by using static and dynamic

methods. In static method, memory is kept at a low power mode for the duration of system

operation. In dynamic method, memory is placed in a low power mode when its idle

time is more than the threshold time. Another approach of memory power management is

described in [163], where multiple hardware components are combined on a single chip to

create smaller and power efficient components.
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2.3.2.3 Other Methods for Power Consumption Management

According to a detailed analysis and modeling of power consumption, miscellaneous

components are also responsible for a large fraction (30% - 40%) of power consumption

inside a computing system [76]. These components include disk, I/O peripherals, network

cards, and power supplies. The primary contributors in power consumption are disk and

power supplies. Device vendors have started implementing their power management pro-

tocols to ensure that these devices can run in a low performance mode. For example, hard

disks typically have a timer that measures the time of inactivity and spins the drive down

to save power.

An application level power management scheme is used in [146] to solve the cost-

aware application placement problem. This scheme also designs an algorithm to minimize

the migration cost while maintaining the performance requirements. Another two step ap-

proach of power aware processor scheduling is presented in [158]. This two step approach,

first performs load balancing among the multiple processors and then applies DVFS to

control the speed of the processors to minimize the power consumption.

A proactive thermal management approach in data centers is described in [106] to

prevent heat imbalance in cooling the data center while minimizing the cooling cost. This

approach optimizes the fan speed and air compressor duty cycle to prevent heat imbalance.

Additionally, it reduces the risk of damage to the data center due to excessive heating in the

data center. An approach of saving power consumption in servers is introduced in [126],

where NAND flash based disk caches are extended to replace PCRAM.
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2.3.2.4 Power Management in Dissertation

In this dissertation, power consumption of the physical server is considered as the pri-

mary component of the operating cost in application deployment. In addition, as com-

putational resource intensive application (modified “Daytrader”) is used in the research,

CPU frequency and CPU utilization are considered as the major contributing factors in to-

tal power consumption (refer to the experiments in next chapters). Therefore, CPU power

management techniques are used to control the power consumption due to CPU core fre-

quency and CPU utilization. During this research, DVFS is used as the tuning option to

change the CPU core frequency for maintaining the desired response time of the applica-

tion and minimizing power consumption at same time. DVFS reduces CPU core frequency

to avoid overheating of CPU core and dynamic power loss. Other CPU power management

techniques, such as DPS and SLM are not used in this research because these techniques

force processors to use the highest CPU core frequency to finish the assigned task as soon

as possible and then switch to low power mode. Due to the use of highest CPU core fre-

quency, these techniques increases the dynamic power consumption, chances of system

crash, and temperature of the CPU core. Moreover, this increased temperature of the CPU

core activates cooling mechanism (cooling fans), which further increases the total power

consumption of the system.

RAM power management approaches are not utilized in this dissertation because the

deployed application (modified “Daytrader”) does not show any significant variation in

RAM utilization with change in the incoming workload. However, the power management
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technique used in this dissertation can also be extended for RAM power management by

utilizing the RAM power consumption models built through experiments and simulations.

2.4 Model Integrated Computing (MIC)

Figure 2.4

Model Integrated Computing Architecture.

Modern computing systems contain a large number of interconnected components,

which increase the complexity of computing systems in functionality and interoperabil-

ity with other systems. In addition to this, applications deployed on the system are tightly

coupled with the physical system resources that add another level of complexity and possi-

bility of unknown interactions between the application and the physical system. Therefore,

it is recommended that the applications and the physical systems are studied together. This

study can be further utilized by the researchers to study the impact of changes in one on
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the other. Model Integrated Computing (MIC) [23] technology has been used successfully

for over two decades to design complex software systems in the form of models. These

models capture the complete requirement, architecture, operating environment, and inter-

action rules of the system in high level models per the researchers’ understanding of the

system. In general, these models are developed for an entire class of the problem domain

instead of a specific implementation.

MIC presents a formal and compositional representation of the model, which is further

utilized during the system development process. A typical system development work-flow

using MIC is shown in Figure 2.4. MIC keeps the models in the heart of the system devel-

opment life cycle similar to the model driven development approach shown in Figure 2.5.

This model based system development life cycle contains various states that include model

specification, verification, implementation, testing, production, and runtime monitoring.

MIC contributes to the model driven development through three core elements: Domain

Specific Modeling Language (DSML), MIC tools for DSML, and Code Generation using

Model Interpreters.

2.4.1 Domain Specific Modeling Language (DSML)

MIC uses DSML to visually or textually represent the system under design. DSML

represent semantics of the system using domain specific symbols in a declarative manner.

A DSML can be defined by using concrete and abstract syntax, a semantic domain, and

mapping between syntactic and semantic information [95]. This concrete syntax contains

visual or textual notations (or symbols) to represent the system models while abstract syn-
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Figure 2.5

Model Driven Development.

tax represents the object relationship and integrity constraints of the DSML. The semantic

domain mappings define the properties of the models created using the DSML. DSML is

useful in creating a tailored modeling language for a specific problem domain.

2.4.2 MIC Tools for Domain Specific Modeling

MIC tools are utilized for generating, validating, and maintaining the domain specific

system models. These tools are first used for creating DSML (or meta-models) for a class

of application (problem) domain and then used as a domain specific modeling tool for a

specific implementation of that domain. The meta-modeling process in MIC tools is based

on UML [37]. MIC uses tools, which are developed at the Institute of Software Integrated

System, Vanderbilt University. GME [14] is used for both meta-modeling and application

modeling of a large number of engineering system in visual and text environment. A set
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of meta-modeling and object constraints language (OCL) [29] concepts are built inside the

GME to enable it to understand the UML-like meta-modeling language and generate target

domain models. During the application domain modeling process, GME is used to create

domain specific models, which represent the target domain and the deployment configura-

tions. These domain specific models are stored in model databases. GME has been used

successfully in many areas including real-time systems [73], fault diagnosis [52], fault

mitigation [74], software health management [49, 114, 67], distributed real-time and em-

bedded systems [135], QoS adaptive applications [156], shipboard power systems [136],

and wireless sensor networks [147].

2.4.3 Code Generation using Model Interpreters

GME provides a set of generic APIs to access the created domain models and their var-

ious attributes. These APIs can be further used by the high level programming languages

(C++) for developing software tools to access and manipulate the model objects and their

attributes. For this purpose, two tool suites are developed at ISIS, Vanderbilt University,

with different functionality: Universal Data Modeling (UDM) and Graph Rewriting and

Transformation (GReAT).

UDM [36] is a model management tool suite that generates model specific meta-

programmable APIs in a high level programming language (C++). These C++ APIs can be

further used for developing software packages specific to that application domain. UDM

can also be used to access the models developed by using other DSML instead of using

GME exclusively [94].
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GReAT [16] is a graphical model transformation tool suite that is used for transforming

the models from one meta-model domain to another meta-model domain. GReAT utilizes

graph transformation rules that convert the input meta-model to the target meta-model by

starting from a small part of the meta-model and moving toward the entire meta-model.

This tool suite is utilized frequently for developing model transformation tools and code

generators [55] in model integrating computing research.

2.4.4 MIC in Dissertation

In this dissertation, MIC methodologies are utilized for developing the distributed con-

trol structure for performance management of a general class of applications hosted in a

distributed environment. MIC techniques first create meta-models of various components

of the distributed control structure, then create a application deployment specific applica-

tion model of the control structure, and finally use code generation utilities for generating

the deployment plan and deployment configurations of the control structure. More details

on this will be presented in Chapter 7.

2.5 Component-based Performance Management Solutions

Distributed computing environments host a wide variety of applications. In general, ap-

plication providers and customers have similar expectations from these applications, such

as minimum response time, maximum throughput, high availability; however, each of these

applications might have different performance metrics, configuration strategies, operating

environment dependency, resource constraints, and management policies. Mostly, these

applications are packaged with their own management solutions, which can manage these
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stand-alone applications. However, it creates another problem of management complexity,

when multiple applications of different nature are hosted in the same infrastructure under

an administrator. In this case, the administrator has to monitor, and manage each applica-

tion from their respective management solutions, which is extremely difficult, error prone,

and inefficient. This monitoring, and managing of different applications can be made ex-

tremely easy and efficient if performed while considering the functionality of individual

modules and components of these applications.

Figure 2.6

Corba Component Model (CCM) description.

Component-based systems provide flexibility to system developers to decompose a

large complex system into smaller components that are created for a special function-

ality. Each of these components provides a well-defined special functionality to other

components connected to it by means of a well-defined interface. The interface of these

components is described as ports and attributes. Ports are communication end points that
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interact with other components, while attributes are the data types that represent the state

of the component. These small components can be reused, reconfigured, and extended in

a flexible manner to combine as a large system. Typical examples of component models:

Corba Component Model [150], Microsoft .NET model [21], Microsoft’s Component Ob-

ject Model (COM) [7], and Enterprise Java Beans Model [12]. These component models

define the attributes of the component, its interaction with other components, its config-

uration rules, and its deployment strategy. CCM is a strong candidate compared to EJB,

COM, and .NET component-based approaches for developing performance monitoring and

management systems due to multiple benefits: CCM components can be developed in mul-

tiple high level programming languages (C++, Java), CCM has advanced support for QoS

properties of components, and CCM components can be executed on multiple operating

systems (Windows and Linux). In these management systems, a number of small mon-

itoring and management components can be developed for each type of resource (CPU,

RAM, etc.) and combined together to function as a complete management system in dif-

ferent application domains. Additionally, these small components can also be replaced

(corrected or updated) in the future by only changing respective components (functions) of

the management system while keeping the rest of the management system unchanged.

In this dissertation, the corba component model (CCM) is used to create various com-

ponents that use CORBA as its middleware infrastructure. CCM specifications are defined

by the Object Management Group (OMG) [27]. A typical component of CCM is shown

in Figure 2.6. According to Figure 2.6, Facet interfaces are a set of services (functional-

ities) that a component provides to other components in a synchronous or asynchronous
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manner. Receptacle interfaces are a set of services that this component needs from other

components to complete a specific task. Event sink and Event source are the ports that

this component uses to subscribe (listen) and publish (send) events respectively. Attributes

represent the state of the component (configuration value of the component), and these can

be set or queried by external components by using CORBA interfaces.

Recently, a number of research groups in the research industry and academia have

utilized component-based management approaches to develop performance management

frameworks for different application domains, such as web services, multimedia applica-

tions, network management, sensor network, real-time systems and workflow systems. A

components-based integrated management framework (SCENE Admin) [107] was devel-

oped for web service platforms. In this framework, an administrator can select and con-

figure the management system of the web service environment. Another component-based

framework PLASMA [46] was developed for building self-adaptive multimedia applica-

tions. PLASMA uses hierarchical reconfiguration and dynamic architectural description

language to create the management framework. A component-based orchestration man-

agement framework [59] was introduced for multi-domain service oriented architecture.

This framework gives a unified and global abstract view of the workflows executing in a

decentralized manner for effective monitoring and management.

A component-based framework [63] was designed for data mining and knowledge dis-

covery in avionics systems by analyzing the measurements from different modules. This

component-based framework results in decreased human intervention and processing for

analyzing the measurements. A component-based framework [73] was developed for giv-
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ing flexibility to developers in modeling real-time systems in a component-based fashion.

Another component-based network management system (RMTool) [65] was designed for

providing flexibility to network administrator in dynamically configuring the network re-

sources of wireless sensor networks. This tool provides the capability of both efficient

monitoring and effective management to the network administrator. A component based

programming framework (ACCORD) [109] was presented for developing self-managed

autonomic applications that can be executed in the distributed environment as composition

of various small autonomic components.

The component-based approach is utilized in this dissertation for the development of a

generic performance management system that can be applied to a class of applications

hosted in a distributed environment. Existing component-based approaches, discussed

above, are applicable to only specific type of applications. The component-based man-

agement system is developed in this dissertation in following steps: developing the meta-

models of the standard components for each functionality (monitoring or control) of the

typical management system, developing these components in high level programming lan-

guage as per meta-model specifications, configuring the components as per the applica-

tion requirements, and deploying the components in distributed environment according to

the deployment plan of the application. This approach facilitates the re-usability of the

developed monitoring sensors, control modules, control algorithms, and application per-

formance models that increase the productivity of the researchers while decreasing the

application specific development.
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2.6 Summary

This chapter described the preliminary concepts used during the course of this dis-

sertation. It also presented the previous research efforts by other research groups in the

following areas: autonomic computing systems, web service development, power con-

sumption modeling and management, model integrated computing, and component-based

performance management systems.
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CHAPTER 3

A PERFORMANCE MODELING APPROACH FOR A MULTI-TIER WEB SERVICE

SYSTEM

This chapter presents research efforts to model a multi-tier web service system that is

hosted in a virtualized environment. In this chapter, web service system configuration, web

service performance models, environment workload models, and physical system power

consumption models are presented. Additionally, previous research on modeling a web

service, preliminary ideas of queueing models, and Kalman filters are also discussed.

3.1 Related Work

In the web service environments, incoming web service requests have a cyclic nature

and correlated properties in computation and data access complexities. Therefore, model-

based approaches are a well-suited option to predict the computational requirement of the

future incident requests and to devise an efficient resource provisioning after observing the

previous requests. The potential of a model-based resource provisioning method in a web

services environment is already demonstrated in [72] for developing a simplified analytical

models of server memory, storage I/O rate, storage response time, and service response

time. This analytical model was utilized to capture the application performance in an in-

formed policy-driven resource allocation for complex resource management challenges.
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Furthermore, an approximate layered queuing model of a multi-tier web application sys-

tem has been used by researchers at IBM Labs in [69] and [145] to capture the service

dependencies, different performance characteristics, per-tier concurrency limits, and re-

source contention. This approximate layered queuing model was developed with help of

the function approximation methods while serving an incoming request among multiple

tiers of the hosted application.

The key characteristics of a web traffic access pattern and corresponding web server

performance have been investigated in [138] with help of auto regressive moving average

(ARMA) filter and G/G/1 queuing models, respectively. The web service performance is

studied to analyze the waiting time behavior of the web server and the latency observed

by the end user. Additionally, a cluster-based web services management technique is de-

scribed in [119] to support a mixed http workload related to multiple services. This man-

agement approach dynamically allocates server resources for maximizing the pre-specified

cluster level utility function with the help of a first principle based (response time) perfor-

mance model of the cluster in the case of extremely dynamic workloads. Furthermore,

machine learning and Bayesian estimation techniques (a Kalman Filter) have been used

in [152] and [90], respectively, to derive the best allocation policy for CPU and memory

resources in a multi-tier deployment with dynamic incoming workloads.

This dissertation presents a systematic performance modeling approach for a distributed

multi-tier web service system. The proposed approach starts by experimentally identify-

ing the system parameters impacting the performance of the web service, by defining the

dependency relationship among these parameters, and then by using that relationship to
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develop the model structure of the system. This performance modeling approach uses

a mixture of a regression technique (offline) for estimating the power usage model and

Bayesian techniques (online exponential Kalman Filter) for estimating the state of the web

service system modeled as an equivalent processor sharing queue system.

3.2 Preliminaries

The developed performance modeling approach uses a multi-layered queuing model

to capture the performance behavior of the web service in a multi-tier environment. An

exponential Kalman filter is developed in this research that estimates the state of the system

as an equivalent processor sharing queuing system. This section presents the key concepts

of the multi-layered queuing system models and of the Kalman filters.

3.2.1 Queuing Models for Multi-Tier Systems

In general, a web request has to wait in a queue before it can enter inside a tier (e.g.,

application or database) and acquire computational resources. For example, if the number

of maximum threads allowed in the application tier is capped to limit concurrency of the

tier, a new request will wait until an already executing request releases a thread. Clearly,

the total service time of the enterprise system is directly affected by the queuing policy

at each tier. Therefore, an approximate queuing model can be used to capture the behav-

ior of such systems. This queueing model can be used to measure the average number

of web requests in the queue and the average time spent in the queue. Generalized struc-

ture of single-server and multi-server queueing systems with the relevant parameters are

shown in Figure 3.1 [139]. Queueing models are represented in Kendall’s notation [97]
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as A/B/C. In Kendall’s notation, A represents the statistical distribution of inter-arrival

time in incoming requests λ. B represents the statistical distribution of service time S of

the incoming requests. C represents the numbers of servers N processing the incoming re-

quests. During this research, four different queuing models [102] are considered: M/M/1,

M/G/1 FCFS, M/G/1 PS, and M/G/1 LPS(k).

Figure 3.1

Queueing System Structure and Parameters.

M/M/1 is the most basic queuing model, where both inter-arrival time and service

time, of the incoming requests, are exponentially distributed (M ). In this case, single

server queue (1) is considered.

The M/G/1 queue assumes that the inter-arrival time is exponentially distributed (M ),

but the service time has a general distribution (G). M/G/1 FCFS is a more realistic
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model of web service behavior since web requests exhibit a wide variance in their service

requirements. The scheduling discipline is first come first served (FCFS). Therefore, this

model assumes that only one request is serviced at a time, hence restricting the concurrency

of the tier to one.

M/G/1 PS is an M/G/1 queue with processor sharing (PS) scheduling. In this

queueing model, a newly arrived request shares the computational resource, concurrently,

with all of the preceding and existing requests. The computational resource is shared

equally by all of the requests in a round-robin manner, though with an extremely short

time slice. In other words, the concurrency level is basically unlimited. When a request

is not using the resource, the request waits in the queue for its turn to get a slice of the

resource. In this queueing model, the mean analysis of the system is rather simple. In fact,

the closed form expression for the mean response time is similar to that of the M/M/1

queue. This queueing model can only be used to study a web server realistically if the total

number of requests in the system do not increase above the maximum concurrency limit.

Thus, if the bottleneck resource utilization is light to moderate (less than 1), this queuing

model can be used to model the web servers.

M/G/1LPS(k) is anM/G/1 queueing model with Limited Processor Sharing (LPS)

scheduling discipline. The parameter k models the concurrency level of the tier. In such a

model, the first k requests in the queue share the computational resource and the rest of the

requests wait in the queue. As requests complete their service and depart from the system,

awaiting requests are admitted to be among the k concurrently sharing the resource in a

processor sharing manner. When k = 1 the queue becomes an FCFS queue, and when
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k = ∞ it becomes a PS queue. The LPS(k) is a realistic queuing model for systems,

which have a limit on the maximum number of jobs that can execute concurrently. This

limit is typically enforced on all web servers and databases. Even in an operating system,

the maximum number of processes that can execute concurrently is limited (e.g., 32000

for Linux kernel 2.6). The analysis of the LPS queue is difficult, which makes online

prediction for response time and other variables intractable [160, 159].

3.2.2 Kalman Filters

Kalman filter [89] (KF) is an optimal recursive data processing algorithm, which esti-

mates the future states of a linear stochastic process in the presence of measurement noise.

This filter is optimal in the sense that it minimizes the mean of squared error between the

predicted and actual value of the states. It is typically used in a predict-and-update loop

where information of the system dynamics, the current system state, the statistical char-

acteristic of the system noise, and the measuring device dynamics are used to estimate

the next system state. The available measurements and statistical description of the mea-

surement noise are also used to update the state estimate. In general, the following two

assumptions are made before applying the standard Kalman filter techniques to a process

for estimation:

1. The system in consideration is described by a linear model. If the system is non-
linear, the system model is linearized at the current state and an extended Kalman
Filter (EKF) can be used in this case.

2. The measurement and system noises are Gaussian and white, respectively. Here,
Whiteness indicates that noise is not correlated with time and it has equal impact on
all operating modes of the system.
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Due to the simple approach with optimal results, the KF has been applied in wide ar-

eas of engineering applications, including motion tracking, radar vision, and navigation

systems. Woodside, et al. [153] applied EKF techniques for the parameter estimation of

a simple closed queueing network model. The population size was approximated by a

continuous variable in order to fit the KEF mathematical framework. An EKF is used to

track parameters, such as the think time and the processing time of a time-varying layered

queueing system in [162]. The EKF uses average response time with three different re-

source utilization: a web processor, a database processor, and a disk. An EKF coupled

with layered queueing models is also applied in [154] to control the number of allocated

servers so as to maintain the average response time within a given range. Another imple-

mentation of an EKF is presented in [161], where an estimation methodology is sought

for estimating the performance model parameters in various open or closed queueing net-

work models. These parameters have lower and upper bounds on values. KF has also been

applied to CPU resource (physical cpu share) provisioning in a virtualized environment,

where virtual machines host application instances [90]. The feedback controllers based

on KF continuously monitors the CPU utilization and accordingly updates the CPU allo-

cation for estimated future workloads [90]. In this case, an average of 3% performance

improvement was observed in extremely dynamic workload conditions over a three-tier

Rubis benchmark web site deployed on a virtual Xen cluster.

In this dissertation, an exponential Kalman filter (ExpoKF) is developed to predict the

computational nature of the incident http requests over a web server. This filter is expo-

nential because it operates on the exponential transformation of the system state variables.
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This transformation allows us to enforce the ≥ 0 constraint on the state variables. These

constraints are not possible in typical Kalman filter implementations. ExpoKF predicts

the service time S and delay D of a web request through observing the current average

response time T of the incident request and request arrival rate ω on the web server. This

filter uses an M/G/1 PS approximate queuing model as the system state equation and

considers variation in S and D at the previous approximation to estimate the S and D at

the next sample time. Further details are provided in Section 3.4.3.

3.3 Web Service System Setup

Multi-tier enterprise systems are composed of various tiers (server) that typically in-

clude web (http) tier, application tier, and database tier. Each of the tiers performs its

function with respect to web requests and forwards the result to the next tier. In order

to experiment and validate the developed web service performance model, a web service

system setup is used in this dissertation. The representative setup consists of application

and database tiers while Http tier is combined with the application tier. Details of the used

setup are described in Table 3.1.

3.3.1 System Setup

Web service system configuration is summarized in Table 3.1. It also shows the virtual

machines (VM) hosted on each of the physical machines and the roles played by those

VMs. All VMs use the same version of Linux (2.6.18 − 92.el5xen). Client machines are

used to generate http requests. Application servers host the open source version of IBM’s

J2EE middleware, Web Sphere Application Server Community Edition (WASCE) [41].
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Table 3.1

Web Service System Setup Configuration

Name Cores Description RAM DVFS VMs
Nop01 8 2 Quad core 1.9GHz

AMD Opteron 2347 HE
8GB No Nop04, Nop07 (Moni-

toring server)
Nop02 4 2.0 GHz Intel Xeon

E5405 processor
4GB No Nop05, Nop08 (Client

Machines)
Nop03 8 2 Quad core 1.9GHz

AMD Opteron 2350
8GB Yes Nop06, Nop09 (Ap-

plication server)
Nop10 8 2 Quad core 1.9GHz

AMD Opteron 2350
8GB Yes Nop11, Nop12

(Database Server)

Database machines host MySQL open source database. Nop03 and Nop10 both have DVFS

capability that allows administrators to tune the entire physical node or its individual cores

for a desired performance level. Xen Hypervisor [43] was used to create, configure, and

manage physical resources (CPU and RAM) for the cluster of Virtual Machines (VMs) on

these physical servers.

3.3.2 Web Service Application

Daytrader [9] is used as a representative application during this research. Business

enterprise loads in extremely dynamic environment is emulated by modifying the the

main trade scenario servlet in Daytrader to shift the processing load of a request from the

database tier to the application tier. The Httperf [47] benchmarking client utility is used

in all experiments to generate the http workload at a pre-specified rate. Httperf provides

flexibility to generate various workload patterns (poisson, deterministic, and uniform) with

numerous command line options for benchmarking. Httperf is modified to log the per-
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formance measurements periodically while executing the experiment. At the end of each

sample period, the modified version of Httperf logs the detailed performance statistics of

the experiment in terms of total numbers of requests sent, minimum response time, maxi-

mum response time, average response time, total number of errors with types, and response

time for each request.

3.3.3 Monitoring Setup

Specially developed python scripts and Xenmon [80] were used as monitoring sensors

on all virtual and physical machines. These sensors monitor the CPU, the disk, and the

RAM utilization throughout system execution. These measurements are reported after each

sampling interval and at the end of the experiment. System time across all machines was

synchronized using NTP. Web server (Daytrader) source code was modified to monitor the

web server performance in max threads active in the web server, response time measured

at application tier and at database tier for each incident request, and average queue size

in the web server after each sampling interval. Measurement of power consumption in a

physical node was performed with help of a real time watt meter [38].

3.4 System Modeling Approach

An accurate system model is necessary to run a computing system efficiently in an SLA

complied environment. The developed model depicts the exact system behavior in terms

of various performance objectives with changes in the operating environment and the con-

trollable parameters. A number of experiments were performed during this dissertation to

learn the performance behavior of the representative system. During these experiments,
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the multi-tier system performance was analyzed with respect to the system utilization, var-

ious environment workload profiles, bottleneck resource utilization, and its impact on the

system performance. Table 3.2 shows the list of parameters that have been identified after

these experiments. This list contains three different types of parameters: Control Inputs,

State Variables, and Performance Variables. Control inputs can be used at runtime dur-

ing an experiment for tuning the system in order to achieve performance objectives. State

variables describe the current state of system under observation. Performance variables

are used to asses QoS objectives. Additionally, state variables are divided into two dif-

ferent categories: Observable and Unobservable. Observable variables can be measured

directly through various sensors, system calls, or application related APIs, while unob-

servable variables cannot be measured directly; instead, they are estimated within a certain

level of accuracy by using existing measurements through various estimation techniques at

runtime (e.g., KF explained in section 3.2.2). Details of the modeling efforts are described

in the following sub sections.

3.4.1 Power consumption

As a first step toward system model identification, the mutual relationship among phys-

ical CPU core utilization, CPU frequency, and power consumption of the physical server

was identified. Figure 3.2 shows the power consumed on one of the physical server Nop03

with respect to the aggregate CPU core usage and the CPU frequency. An extensive ex-

periment was performed on the physical server Nop03 with the help of a specially written

script, which exhausted a physical CPU core through floating point operations in incre-
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Table 3.2

System Parameters.

Control Inputs State Variables Performance Variables
CPU Frequency CPU Utilization (Observ-

able)
Average Response Time

Cap on Virtual machine re-
sources.

Memory Utilization (Ob-
servable)

Power consumption in
Watts

Load distribution percent-
age (in a cluster)

Service Time (Unobserv-
able)

Percentage of Errors

Number of Service
Threads

Queue waiting Time (Un-
observable)

Number of Virtual Ma-
chines in Cluster

Queue Size on each server
(Unobservable)
Number of Live Threads
(Observable)
Peak Threads available in a
JAVA VM (Observable)

ments of 10% utilization that was independent of the current CPU frequency. With multiple

instances of this utility, all eight physical CPU cores of the Nop03 server were loaded in an

incremental manner for different discrete values of CPU frequencies. The CPU frequency

across all of the physical cores (1 to 8) was kept the same during each step. The power

consumption was measured with the help of a real time watt meter. During this experi-

ment, the utility scripts perform floating point computations, which were neither memory

intensive nor I/O intensive. Therefore, only CPU utilization and CPU core frequency were

considered as the factors of power consumption. Based on this experiment, a regression

model was created for power consumption at physical machine with respect to CPU core

frequency and aggregate CPU utilization. After analyzing the results (and reconfirmation

with several other experiments across other nodes), it was observed that the power con-
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sumption model of a physical machine is non-linear because power consumption in these

machines depends not only upon the CPU core frequency and utilization, but also depends

non-linearly on other power consuming devices (e.g., memory, hard drive, CPU cooling

fan, etc).

Figure 3.2

Power Consumption on Nop03 vs (CPU frequency and Aggregate CPU core Utilization).

As a result, a look-up table with near neighbor interpolation was found to be the best fit

for aggregating the power consumption model of the physical machine. The combination

of the CPU core frequency and aggregate CPU core utilization of the physical machine is

used as the key for the lookup table to access the corresponding power consumption value.

This aggregate power model was utilized further for the controlled experiments described

in the next chapter for predicting the estimated power consumption by the physical server

at a specific setting of the CPU core frequency and the aggregate physical CPU utilization.

58



www.manaraa.com

3.4.2 Request characteristics

The Httperf benchmark application code was modified to allow the generation of client

requests to the web server (Nop06) at a pre-specified rate as provided from a trace file.

At Nop06, each request first performed certain fixed floating point computations on the

application tier (Nop06) and then performed a random select query from the database tier

(Nop11). client requests are characterized by using linear regression [118] as the number

of CPU cycles needed to process the request at the web server.

Figure 3.3

Work Factor Plot for Request Characteristic.

During any sampling interval T , if ρ is the virtual CPU utilization, f is the CPU fre-

quency, c is the work factor of the request (defined in terms of CPU clock cycles), λ is the

request rate, and ψ is system noise,
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ρ f = λ c+ ψ (3.1)

The average work factor was computed to be 2.5X104 CPU cycles with a coefficient

of variation equal to 0.5. The variation in W shows the variation in the nature of final

request based upon the chosen symbol for the database query. The result of the experiment

is shown in Figure 3.3.

Due to the similar computational nature of all the requests incident on the web server in

a given sample time, the total computation time for all the requests can be approximated,

which in turn gives the average response time of the requests in a given sample time.

We use this average response time information to check the status of the QoS objective

(response time) in the web server.

3.4.3 Webserver characteristics

Figure 3.4

Http Workload based upon World Cup Soccer(WCS-98) Applied to the Web Server.
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Figure 3.5

Web Server Behavior Modeling Experiment Setup from Section 3.4.3.

Experiment were performed to model the uncontrolled web server performance and to

identify the bottleneck resource of the web server. A system resource is considered as the

bottleneck if performance of the web server is affected due to limited availability of this

resource. For example, CPU time slices, free Java threads, and RAM are necessary to pro-

cess an incoming web request. In this experiment, Nop09 was the virtual machine (physical

machine Nop03) hosting the application tier of the Daytrader application (see Figure 3.5).

The virtual CPU of Nop09 was pinned to a single physical core and 50% of the physical

core was assigned to Nop09 as the maximum available computational resource. Physical

memory was also limited to 1000MB for Nop09. Nop11 was configured as a database

tier by using similar CPU and memory related operating settings over the physical server

Nop10. To simulate a real time load scenario, all CPU cores of the physical server Nop03
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(except the CPU core hosting Nop09) were loaded approximately 50% with help of the

utility scripts described in Section 3.4.1. The maximum concurrency limit of the web

server was limited to 600 by configuring the MAX JAVA threads parameter in the IBM

Websphere application server. All CPU cores in the physical server Nop03 were operating

at their maximum frequency of 2.0 Ghz. The incoming http client request trace (see Fig-

ure 3.4) of this experiment was based on user request traces from the 1998 World Cup

Soccer(WCS-98) web site [56].

The response time and power consumption as measured from this experiment are shown

in Figure 3.7 and Figure 3.6. These figures also show the CPU utilization at the web server

and the aggregate CPU utilization of the physical machine. Notably, it was observed that

the CPU utilization at the web server (Nop09CPU ) and the aggregate CPU utilization of

the physical machine (Nop03CPU ) follow a trend that is similar to the rate of incoming

http requests made to the application tier. The power consumption curve was almost flat.

The web server response time is also correlated with the resident requests (system queue

size) in the web server system.

To determine the bottleneck resource, a queuing approximation for a two tier system

was used as shown in Figure 3.8. λ is the incoming throughput of requests to an application

while ρ is the utilization of the bottleneck resource. S is the average service time on the

bottleneck resource,D is the average delay, and T is the average response time of a request.

The average waiting time for a request is W = T − S − D. We define a queuing model

with the state vector [S D] and the observation vector as [T ].
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Figure 3.6

Web Server Behavior Modeling Experiment Results.
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Figure 3.7

Web Server Behavior Modeling Experiment Results (continued from Figure 3.6).
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An ExpoKF was used to estimate the system state. It is important to note that the

system can be approximated as a M/G/1/∞ PS queue if the system has no bottlenecks.

In the presence of a bottleneck, the system resource utilization (not necessarily CPU) will

approach 1 (or 100%). At that time, the system will change to the LPS queue model.

However, as mentioned earlier, it is difficult to build a tractable model for LPS queuing

systems. Hence, the operating regions of the system is identified, where the system changes

the mode between two queuing models and the system is analyzed in the infinite PS queue

region only.

Figure 3.8

A Queuing Model for the Two-Tier System.

The ExpoKF equations were written in exponentially transformed variables [x1 x2],

such that S = ex1 and D = ex2 . Here, x1, x2 ∈ R. Note that this transformation en-

sures S,D ∈ R+: For a given time sample of observation k, Equation 3.2 defines the

system update dynamics and Equation 3.3 defines the observation. N(0, Q) and V (0, R)

are Gaussian processes measurement noises with mean zero and covariances of Q and R
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respectively. One can verify that these equations described the behavior of a M/G/1PS

queue. Here, predicted bottleneck utilization ρ̂k is given in Equation 3.4. Moreover, the

ExpoKF does not update its state when the predicted bottleneck resource utilization be-

comes more than 1.

 ex̂1k

ex̂2k

 =

 ex1(k−1)

ex2(k−1)

+N(0, Q) (3.2)

T =
expx1k

1− λk ex1k
+ ex2k + V (0, R) (3.3)

ρ̂k = λk e
x1k (3.4)

Figure 3.9 shows results of the off-line analysis of the logs with the help of the kalman

filter. These logs were generated during the experiment in Section 3.4.3. Service time S

and delay D are in millisecond while response time T is specified in seconds. According

to Figure 3.9(sub-figure 1), the developed ExpoKF tracks service time S and delay D at

the web server accurately with very low error variance as the experiment (Section 3.4.3)

progresses. Additionally, in sub-figure 2, ExpoKF tracks the bottleneck resource utiliza-

tion, which is similar to the CPU utilization of the system. However, it was noticed that

sometime, the bottleneck utilization trend is not similar to the CPU utilization. In those

cases, the number of available JAVA threads acted as the bottleneck. According to sub-

figure 3, the predicted response time from the EKF, Tpred, and actual response time, T ,
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are also very close to each other, which indicates accuracy of the ExpoKF in capturing the

response time dynamics of the web server system. This response time prediction is used in

on-line fashion with a predictive control framework in the next chapter.

3.4.4 Impact of Maximum Usage of the Bottleneck Resource

This experiment was performed to observe the effect of the extremely high bottleneck

resource usage on the web server performance. This test setup uses Daytrader application,

which is a multi-threaded java based enterprise application hosted on Web Sphere Applica-

tion Server Community Edition (WASCE) [41]. Daytrader receives incoming http requests

on port number 8080. This Daytrader application serves the incoming http requests by

creating a new child JAVA thread or through an existing JAVA thread if one is available

in the pool of free threads. A newly arrived http request for the Daytrader application is

handed over to the newly created or free child thread for further processing. This child

thread rejoins the pool of free threads once it finishes the processing. A limit on the maxi-

mum number of JAVA threads can be imposed on the web server. This maximum limit can

also be considered as the maximum concurrency limit of the web service system. In case

of unavailability of a free thread due to already achieved maximum thread limit and empty

pool of free threads, a newly arrived http request has to wait for thread availability, which

impacts the application performance severely in terms of the response time. Therefore, the

number of available threads was identified as the bottleneck resource of the system.

A number of experiments were performed with different settings for Max JAVA Threads

in WASCE. This parameter sets the maximum number of threads that can be used for re-
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Figure 3.9

Offline Exponential Kalman Filter Output from Section 3.4.3.
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Figure 3.10

Impact of Maximum Utilization of the Bottleneck Resource on Web Server Performance.
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quest processing. Based on the observation, there are typically 90 more system threads,

which are not accounted for under this cap. The results from one of these experiments are

shown in Figure 3.10, where max JAVA threads limit is set to 500. This figure shows that

at the maximum utilization of the bottleneck resource, system performances deteriorates

significantly and the response time from the web server becomes unpredictable. Further-

more, this is the region, where the system makes transition from a PS queue to an LPS

queueing system.

Once the system reaches the max utilization of the bottleneck resources, it restricts en-

try for more requests into the system resulting in the maximum utilization of the incoming

system queue, which in turn results in the rejection of the incoming client requests from

the user. Therefore, to achieve predefined QoS specifications, the system should never be

allowed to reach the maximum utilization of the bottleneck resource. Additionally, this

boundary related to the maximum usage of the bottleneck resource can also be considered

as a “Safe Limit” of the system’s operation.

3.4.5 Impact of Limited Usage of Bottleneck Resource

In this experiment, the web server performance was observed when the bottleneck re-

source utilization varies from minimum to maximum and was restored back to the mini-

mum value. This type of investigation provides knowledge about web server performance

if bottleneck resource utilization is lowered from the maximum limit through a controller

that maintains the QoS objective of the multi-tier system.
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Figure 3.11

Web Server Performance while Limiting the use of Bottleneck Resource.
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The configuration settings for this experiment were the same as Section 3.4.3. The

MAX number of JAVA threads for this experiment were 600. The client request trace

profile used for this experiment is shown in Figure 3.11, sub-figure 5. According to the

results shown in Figure 3.11, system utilization (sub-figure 1) and response time (sub-

figure 4) follow the trend of the applied client request profile (sub-figure 5). The sudden

increase in the size of the web server queue (sub-figure 3) indicates the contention of the

computational resources among all of the pending requests inside the system. The sudden

increase in RAM utilization is due to the increase in the thread utilization of the system.

Additionally, by comparing the request rate and response time plot in Figure 3.11, it is

apparent that by lowering the system utilization and client load on the web server, a web

server can be brought back to the state, where QoS objectives (queue size and response

time) of the system are restored.

3.4.6 Kalman Filter Analysis

Results of the experiment were analyzed with the help of the ExpoKF described in

Section 3.2.2 and the results of this analysis are shown in Figure 3.12. According to Fig-

ure 3.12, the ExpoKF tracks service time and delay at web server accurately with low

variance as the experiment progresses. One can notice the regions where the bottleneck

resource utilization approaches unity while the CPU utilization is less than one. Upon fur-

ther investigation of those time samples, the maximum number of Java threads available

in the web server were found to be the bottleneck. During the experiment, when predicted

utilization of the bottleneck resource is more than one, the ExpoKF does not update its
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Figure 3.12

Offline ExpoKF Analysis of the Results from Figure 3.11.
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states. In the later half samples of the experiment, the Kalman filter again starts tracking

the bottleneck utilization and response time efficiently. Therefore, the goal of any success-

ful controller design for performance optimization of the system will be to drive the system

for operating in the stable region, where the bottleneck resource utilization is less than 1.

3.5 Summary

In this chapter, we presented a simple and novel approach to develop system models

with low variance for multi-tier enterprise systems. This approach can be used for perfor-

mance modeling of multi-tier enterprise applications by using regression analysis of system

measurements corresponding to a discretized domain of operating settings. Performance of

this modeling approach was demonstrated on a two-tier benchmark enterprise application

”Daytrader.” Experimental results show that the generated models can accurately predict

the system behavior with very low variance.
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CHAPTER 4

PERFORMANCE MANAGEMENT OF A WEB SERVICE DEPLOYMENT USING A

MODEL-BASED CONTROL APPROACH

In this chapter, a model-based predictive controller is presented that uses the web ser-

vice performance model and power consumption model developed in the previous chapter.

This predictive controller utilizes the previously developed exponential Kalman filter (Ex-

poKF) for estimating the computational requirement of the incoming http requests, predicts

aggregate response time of the incident requests, and uses the power consumption model

to estimate the power consumption during the next time sample. This predictive controller

optimizes the system behavior for QoS objectives through continuous monitoring of the

underlying web service system and by choosing the optimal control input that maintains

the QoS objectives of the system in next time sample.

This predictive controller is an advanced version of the L0 Controller proposed in [93].

Specific contributions of this dissertation in developing the advanced predictive controller

are: utilizing the ExpoKF based system model for predicting the dynamic computational

requirements of the incoming workload, using a more accurate power consumption model

that utilizes CPU core frequency and CPU utilization in a virtual environment, and opti-

mizing the performance of a typical multi-tier enterprise application Daytrader.

75



www.manaraa.com

4.1 Preliminaries

In this section, model-predictive control basics and a typical control theory based per-

formance management system are briefly presented.

4.1.1 Model-Predictive Control

Model-Predictive Control (MPC) is a model-based approach to control a system (chem-

ical, power system, computer, etc.) by using an explicit system model. This system model

is used at each control interval to predict the future system behaviour by applying a se-

quence of control adjustments on the system. These control adjustments are computed for

optimizing the future system behavior and keeping the system within certain pre-specified

constraints by maximizing a utility function in extremely dynamic operating environment.

The MPC strategy is also known as Receding Horizon Control (RHC). In this strategy, an

open loop optimization problem is solved at each control step for future prediction horizon

and pre-specified constraints are applied to the system to compute the sequence of con-

trol adjustments. The first control adjustment from the sequence is applied to the system

and this step is repeated again at the next control interval. The MPC strategy has several

benefits over other advanced control technologies:

1. It contains various tuning parameters to control the computational overhead of the
control strategy, such as the prediction horizon and an optimization algorithm library
for utility function.

2. It handles operating and system state constraints explicitly in the control strategy.

3. The system model used by the MPC can be updated at run-time without making any
changes in the MPC strategy.

4. The complexity of the developed system model can also affect the performance of
the MPC strategy. The computational overhead of the developed MPC approach will

76



www.manaraa.com

depend on the number of state variables, the environment inputs, and control input
set used inside the system model.

In the past, MPC strategies have been applied to a variety of industrial control sys-

tems, such as electrical, chemical, and mechanical systems [124]. However, recently these

strategies have also been applied for controlling computing systems [51, 93, 92, 48], Un-

manned vehicle formations [75, 100], and electronic shipboard power systems [136]. MPC

strategies are applied to a large number of systems, which have utility functions as linear

unconstrained to non-linear constrained. However, in this chapter, only the non-linear con-

strained utility function is considered for developing the appropriate MPC strategy. More

details of the utilized MPC strategy will be explained in future sections of this chapter.

4.1.2 Control Theory based Management of Computing Systems

Control theoretic approaches are utilized for automating the system management tasks

by constantly observing the system performance parameters and by applying computed

control commands (inputs). These control commands keep the system within the bound-

aries of permissible system states, which are defined through state constraints. A typical

control system is shown in Figure 4.1. System Set Point is the desired system state, which a

system tries to achieve during its operation. Control Error is the difference between the de-

sired system set point and the measured output during the system operation. Control Inputs

are the set of system configuration parameters that are applied to the system dynamically

for changing the performance level of the system. Controller Module takes observation

of the measured output and provides the optimal combination of different control inputs

to achieve the desired set point. Estimator Module estimates the unknown parameters for
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the system based upon the previous history by using statistical methods. Target system is

the system in consideration, while System Model is the mathematical representation, which

defines the relation between input and output variables of the system. Learning Module

observes system output through the monitors and extracts system behavior information by

using the statistical methods.

Figure 4.1

Main Components of a General Control System.

4.2 Model-Based Online Predictive Controller

Elements of the developed predictive control approach are shown in Figure 4.2. Tar-

get System represents the web service node that is monitored through various Monitors.

These monitors collect measurements from the web service node and forward them to the

Kalman filter (i.e. ExpoKF) at run-time. The ExpoKF estimates the computational nature
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of the incoming http requests and corresponding system state in service time and response

time. These estimated system states, future request estimates from Request Forecaster, are

used by the Controller Model. The Controller model uses various Control Algorithms and

desired system Set Points to calculate the optimal value of control input for next sample.

This control input is applied to the web service system for the next sample.

Figure 4.2

Elements of the Predictive Control Approach.

4.2.1 System Variables

Although there are a large number of system parameters listed in Table 3.2, a small set

of the most important parameters is chosen for the predictive controller in order to show

the performance of web service modeling approach described in Chapter 3. The chosen

control input is the CPU core frequency due to its impact on the system performance as

defined by response time of the web service and power consumption of the physical system.
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System queue size and response time were chosen as the system state variables, while power

consumption was chosen as the performance variable. The developed predictive controller

tries to minimize the application queue size and the total response time as parts of the

system operating cost function J (described later in this chapter) while keeping the power

consumption at minimum. Experiments (reported in Chapter 3) indicate that the higher

value of application queue represents contention in the computational resources required

for the application while total response time indicates a system’s capability to process the

requests residing inside the system queue in a timely manner. Therefore, the application

queue size and total response time are also chosen as a component in cost function.

The system model describes the dynamics of the active state processing element. We

used a multi-layered queueing model to capture the dynamics of the system. These system

dynamics can be represented as the following state space equation:

x(k + 1) = Φ(x(k), u(k), ω(k)) (4.1)

where x(k) ⊆ Rn is the system state at time sample k, the set of user controlled system

inputs is u(k) ∈ U ⊆ Rm (e.g., CPU frequency at time k), and ω(k) ∈ Ω ⊆ R is the

environment input at time k (e.g., incoming http requests toward the web service). The

state update function Φ captures the relationship among the observed system state x(k),

the control inputs u(k) that adjust system parameters, and the environment input ω(k),

which can not be controlled.
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Since the current value of the environment input ω(k) is not available until the next

sampling instance k+1, the system dynamics can only be captured in state update function

Φ by using a system model with estimated values of environment input ω̂(k):

x̂(k + 1) = Φ(x(k), u(k), ω̂(k)) (4.2)

where x̂(k + 1) ⊆ R is the estimated system state at time sample k + 1 while ω̂(k) is the

expected environment input at time sample k.

4.2.2 Forecasting Environment Input

The estimation of future environmental input ω̂(k) to the system is crucial for esti-

mating the future system states x̂(k + 1) and system outputs. In this predictive control

approach, an autoregressive integrated moving average (ARIMA) filter (similar to [93])

was used to estimate the environmental input ω̂(k) by using function θ according to the

following equation.

ω̂(k) = θ(ω(k − 1, r)) = γ1ω(k − 1) + γ2ω(k − 2) + (1− (γ1 + γ2))ω̄(k − 3, r) (4.3)

where γ1 and γ2 are user specified weights on the current and previous arrival rates for

prediction and ω̄(k − 3, r) represents average value of environment input between time

samples (k − 3) and (k − 3 − r). ω(k − 1, r) represents the array of environment inputs

between sample time (k− 1) and (k− 1− r). More accurate forecasting can be performed

by accommodating the previous estimation errors as specified in [93].
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4.2.3 Controller Model

In order to combine the estimated power consumption and the predicted response time,

the predictive controller uses a different internal system model. The controller model uses

the estimated system state, predicted response time, and predicted power consumption to

make the system decisions. The system state for this experiment, x(k), at time k is defined

as set of system queue q(k) and response time r(k), that is:

x(k) = [q(k) r(k)] (4.4)

The queuing system model dynamics is given by the equations:

q̂(k + 1) =

[
q(k) + ω̂(k)− u(k)

ĉ(k)um
T

]+
(4.5)

and

r̂(k + 1) = (1 + q̂(k + 1))
ĉ(k)um

u(k + 1)
(4.6)

where [a]+ = max(0, a). q(k) is the queue level of the system at time k, ω(k) is the

arrival rate of http requests, r(k) is the response time of the system, r̂(k + 1) is expected

response time of the system, u(k) ∈ U is the frequency at time k (U is the finite set of all

possible frequencies that the system can take), um is the maximum supported frequency

in the system, ĉ(k) is the predicted average service time (work factor in units of time)

required per request at the maximum frequency. The online ExpoKF (see Section 3.4.3)
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estimates the service time Ŝ(k) of the incoming http request at the current frequency u(k),

which is scaled against the maximum supported frequency of the system to calculate the

work factor ĉ(k) according to the following equation:

ĉ(k) = Ŝ(k)
u(k)

um
(4.7)

E(k) is the system power consumption measured in watts at time k, which is calculated

by using the system power consumption model developed in Section 3.4.1.

4.2.4 Operating Constraints

The web service system in consideration must follow the strict operating constraints

of the system state and the control inputs. In general, these operating constraints are for-

mulated in feasible (or valid) system state variables and the permissible control inputs at

a particular system state. These constraints represent the operating state of the system for

safe operation or extreme violation of QoS objectives. These constraints are imposed on

the system in two ways: Firstly, by preventing the system transition to the unsafe states by

reducing the control input set, which will not allow these transitions. Secondly, by forcing

system to make a transition, which moves system back from these unsafe states to safe

states through applying corrective control inputs. In this case, operating constraints were

applied to the system state x and the control input u. These constraints include the feasible

domain of the system states (x(k) ∈ X), the permissible control inputs (u(k) ∈ U ) at each

system state (x(k)), and the desired terminal state (xs). The system in consideration must

follow the admissible trajectory of the system states (x(k) ∈ X) by using permissible con-
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trol inputs (u(k) ∈ U defined by the function V alid(x(k), u(k))) to drive the system close

to the desired terminal state xs, while keeping the control, transient, and terminal costs to

minimum. Here, function V alid(x(k), u(k)) returns 1 if control input u(k) is permissible

at system state x(k), otherwise it returns 0.

4.2.5 Control Algorithm and Performance Specification

A limited look-ahead control algorithm (similar to [93]) is utilized by the developed

model-predictive controller to solve the control optimization problem. According to this

algorithm, starting from a time k0, the controller solves an optimization problem defined

over a predefined horizon H (k = k0 + 1, k0 + 2, ..., k0 + H) and chooses the first input

u(k0) that minimizes the total cost of operating the system, J , in the future during the

prediction horizon.

The prediction horizon was limited to H = 2 because there is a computation cost asso-

ciated with a longer prediction horizon and estimation error at each step also accumulates

with subsequent steps in the horizon. Formally, cost function J(k) can be specified as:

J(k) = ‖x(k)− xs‖A + ‖E(k)‖B (4.8)

The cost function J at time k, is the weighted conjunction of drift of the system state

x(k), (x(k) = [q(k) r(k)]) from the desired set point xs, of the system state (xs = [qs rs]

where qs = desired maximum queue size, rs = desired maximum response time) and power

consumption E(k) (desired power consumption is 0). A and B are user specified rela-

tive weights for the drift from the optimal system state xs and power consumption E(k),
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respectively. The power consumption E(k) is predicted with the help of the lookup table

generated in Section 3.4.1 based on the current CPU core frequency and the aggregate CPU

utilization of the physical server. Formally, the chosen control input can be calculated by

using algorithm shown in Figure 4.3.

Figure 4.3

Predictive Control Algorithm for Calculating Value of Control Input.

4.3 Case Study: Power Consumption and QoS Management of a Web Service

This section uses the concepts introduced in the earlier chapters for managing power

consumption in a physical server while maintaining the predefined QoS objectives of min-

imum response time under a time varying dynamic workload for the Daytrader application
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hosted in a virtualized environment (see Section 3.4.3). The following subsections will

provide the details of this case study.

4.3.1 Experiment settings

Experimental settings and incoming request profile for this experiment were kept sim-

ilar to Section 3.4.3 for direct comparison of the webserver performance with and with-

out the controller deployment. A local performance monitor executing on the web server

(Nop09) collected, processed, and reported performance data after every SAMPLE TIME

(30 seconds) to the controller, which is executing on the physical host machine (Nop03).

The average queue size of the system is measured based on the total resident requests

in the system at the previous sample, (plus) the total incident requests into the system,

and (minus) the total completed requests from the system in the current sample duration.

Schematic description of the predictive controller with web server deployment is described

in Figure 4.4

4.3.2 System State for Predictive Control

The EKF described in the previous chapter was used to track the computational nature

of the incoming http requests. The two main parameters received from the filter are the

current service time S and predicted response time Tpred. These values are then plugged

into the model described in Section 4.2.3. The power model described in Section 3.4.1

was used to estimate the system (physical node of webserver) power consumption. With

the help of these system and power models, the predictive controller estimates the optimal

configuration of the system in terms of CPU core frequency by using algorithm shown
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Figure 4.4

Predictive Controller System Setup

in Figure 4.3. Also, the performance of the online controller directly depends upon the

accuracy of the KF estimations for parameters of the webserver performance model and

the power consumption model of the physical system.

For this experiment, the optimal system state was chosen as xs = [qs, rs] with qs = 0

and rs = 0, which shows an inclination toward keeping both the system queue and the re-

sponse time to a minimum. A andB (user specified relative weights for cost function) were

chosen as 10000 and 1, respectively, to penalize the multi-tier system a lot more for incre-

ment in queue size and response time compared to the increment in power consumption.

Additionally, look ahead horizon value H was 2 for the current experiment. Request fore-
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casting parameters γ1 and γ2 were equal to 0.8 and 0.15, respectively, to put the maximum

weight on the current arrival rate in estimating the future request arrival rate.

4.3.3 Experimental Results

Results from this experiment are presented in Figure 4.5 and Figure 4.6. The direct

comparison of the results from the experiments in presence and absence of the controller

for response time, system resources, and power consumption are presented in Figure 4.6.

Additionally, the ExpoKF estimations for this experiments are shown in Figure 4.7, while

the accuracy of the power consumption model is presented in Figure 4.8. The comparison

between the actual numbers of http requestes towards the webserver and the numbers esti-

mated by the ARIMA estimator is shown in Figure 4.9, which represents the accuracy of

the ARIMA estimator.

The Nop03 CPU core frequencies during the experiment are shown in Figure 4.5 (sub

figure 2) and the JAVA thread utilization of the web server is shown in sub-figure 3. Sub-

figure 4 shows the queue size of the web server through the method described in Sec-

tion 4.3.1. The most interesting plot in Figure 4.5 is sub-figure 2, which shows the change

in frequency of the CPU core from the controller to achieve predefined QoS requirements

based on the control steps taken by the controller. After direct comparison of sub-figure 2

and sub-figure 1 from Figure 4.5, we can see that Nop03 CPU core frequency is changed

when incident request rate at the web server changes. Additionally, the controller chose

1.2 Ghz frequency for the CPU core until there was some sudden increase or decrease in

the incident request rate. Furthermore, the controller does not change the frequency of the
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core too frequently, even when the incident request rate is changing continuously. This less

often change in CPU core frequency shows a minimal disturbance in the system operation

due to the predictive controller.

The aggregate CPU utilization and memory utilization (sub-figure 4) of the applica-

tion and the database tier are shown in Figure 4.6. These utilization plots show negligible

memory and CPU utilization overhead due to the controller. However, the increment in

CPU utilization while using controller is due to the lower value of CPU core frequen-

cies. The power consumption plot for Nop03 is shown in Figure 4.6(sub-figure 3), while

statistics (max and min) of observed response time at web server are shown in Figure 4.6

(sub-figure 1 and 2). These response time statistics show that even after applying lower

frequency values by the predictive controller, the response time remains in a similar range

as in the absence of a controller with highest frequency. It also shows that while managing

to decrease power consumption, the controller does not affect QoS objectives of the web

service system negatively.

According to Figure 4.7, the ExpoKF tracks the average response time T of the incident

requests and bottleneck utilization with high accuracy. Additionally, the estimated service

time of the incident requests by the EKF shows minimal variation. According to sub-figure

3, the predicted response time from the EKF Tpred and actual response time T are also very

close to each other, which reflects accuracy of the EKF even in online deployment. Service

time S and delay D are in millisecond while response time T is specified in seconds.

According to Figure 4.6 (sub-figure 3), the controlled experiment uses a lower fre-

quency most of the times, which results into considerable amount of power saving (18%)

89



www.manaraa.com

Figure 4.5

Web Server Performance Results With Predictive Controller.
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Figure 4.6

Comparison of Web Server Performance with Controller and Without Controller from
Section 3.4.
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Figure 4.7

Online EKF output Corresponding for experiment with Predictive Controller.
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over a period of four hours of experiment ( Figure 4.6 sub-figure 3) compared to the base-

line experiment shown in Section 3.4. The controller changes the frequency of the CPU

core on very few occasions; however, the controller is able to identify the sudden increase

in the incident request rate, which reflects adaptive nature of the controller in the case of

dynamic environment conditions.

According to Figure 4.8, the power model developed in Section 3.4.1, estimates the

power consumption in the physical machine Nop03 with higher accuracy with only 5%

average error in prediction. Additionally, the JAVA thread utilization (see Figure 4.5) is

still less in case of controller, which indicates that even after slowing down the system,

incident requests are getting served in time without much contention of computational

resources. Furthermore, according to Figure 4.5, mean server queue statistics are also in

the same range for controlled and uncontrolled experiments.

4.4 Summary

This chapter demonstrates that the system model developed in Chapter 3 can be com-

bined with a predictive controller to maintain the system in a closed boundary of QoS

in extremely dynamic and unpredictable operating environment. According to the results

shown in this chapter, the developed system model, based on EKF, tracks the system perfor-

mance online with high accuracy. Additionally, the proposed power consumption model of

the system used by the controller predicts the overall physical server power consumption

with 95% accuracy. Using this model, we showed that we can optimize system perfor-

mance and achieve 18% reduction of power consumption in four hours of the experiment
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Figure 4.8

Comparison of Power Consumption for Actual Vs Predicted one Through Power
Consumption Model in Section 3.4.1.

Figure 4.9

Comparison of Actual Http Workload from the Clients Vs Predicted one Through the
Estimator.
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in single physical server with negligible impact on the response time. Furthermore, the

experimental results (CPU and RAM consumption with and without the controller) indi-

cate that the proposed approach has low run-time overhead in terms of computational and

memory resources.
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CHAPTER 5

A REAL-TIME AND FAULT-TOLERANT DISTRIBUTED MONITORING SYSTEM

In this chapter, a distributed monitoring system, “RFDMon,” is introduced for an ef-

ficient exchange of measurements among the computing nodes of a distributed system.

RFDMon was developed for comprehensive monitoring of the system resources, system

health, and application performance statistics in a distributed deployment. RFDMon mon-

itors computing systems in a distributed manner and reports each event to the system ad-

ministrator with maximum accuracy and minimum resource overhead. It also introduces

self-configuring properties in the distributed monitoring system. RFDMon uses ACM:

ARINC-653 Component Framework [73] and Open splice [31], which is an open source

implementation of Data Distribution Services [5].

5.1 RFDMon: Real-Time and Fault-Tolerant Distributed Monitoring System

The initial version of this monitoring system was developed at the ISIS, Vanderbilt

University, for Fermi Lab, IL, to monitor scientific clusters in order to identify the location

and cause of failures during the execution of scientific experiments. In this dissertation,

“RFDMon” is extended to monitor the performance statistics of the deployed applications

in distributed environment and to introduce self-configuration and self-healing autonomic

properties for correcting faults in the monitoring system itself.
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5.2 Preliminaries

The developed monitoring system “RFDMon” consists of two major modules: the

Distributed Sensors Framework and the Infrastructure Monitoring Database. The dis-

tributed sensors framework utilizes data distribution services (DDS) middleware standard

for communication among the nodes of the distributed infrastructure by using the publish-

subscribe mechanism [78]. It uses Opensplice Community Edition DDS [31] and executes

a sensor framework on top of the ARINC component framework [45]. The infrastructure

monitoring database uses Ruby on Rails [33] to develop a web service, which is used to

update the database with measurements and to display the stored data from the database

on the administrator web browser. In this subsection, the key concepts of the publish-

subscribe mechanism, DDS, ARINC-653, and Ruby on Rails development framework are

briefly discussed.

5.2.1 Publish-Subscribe Mechanism

The publish-subscribe is a communication model for sharing data (information) in dis-

tributed infrastructures. Various nodes can communicate with each other by sending (pub-

lishing) data and receiving (subscribing) data anonymously through the communication

channel as specified in the infrastructure. Publishers and subscribers need only the name

and definition of the data in order to communicate. Publishers do not need any information

about the location or identity of the subscribers, and vice versa. Publishers are responsible

for collecting the date from the application, formatting it per the data definition, and send-

ing it out of the computing node to all registered subscribers over the publish-subscribe
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domain. Similarly, subscribers are responsible for receiving the data from the publish-

subscribe domain, format it per the data definition, and present the formatted data to the

intended applications (see Figure 5.1).

Figure 5.1

Publish Subscribe Architecture.

Publish-subscribe communication is performed through the DDS domain. A DDS do-

main can have multiple partitions. Each partition can contain multiple topics. Topics are

published and subscribed to across the partitions. Partitioning is used to group similar

types of topics together. It also provides flexibility to the application for receiving data

from a set of data sources [78]. The publish-subscribe mechanism overcomes the typical

short comings of the client-server model, where client and servers are coupled together for

exchange of messages. In the case of the client-server model, a client should have informa-

tion about the location of the server for the exchange of messages. However, in the case of
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the publish-subscribe mechanism, clients should know only about the type and definition

of the data published for the server or other nodes in the domain.

Figure 5.2

Data Distribution Services (DDS) Architecture.

5.2.2 Open Splice DDS

OpenSplice DDS [31] is an open source community edition version of the DDS specifi-

cations defined by the Object Management Group [27]. These specifications are primarily

used for communication requirements of distributed real-time systems. Distributed sys-

tems use DDS as an interface for the “Data-Centric Publish-Subscribe” (DCPS) commu-

nication mechanism (see Figure 5.2). Data-Centric communication provides flexibility to

specify QoS parameters for the data, depending upon the type, availability, and criticality

of the data. These QoS parameters include the rate of publication, rate of subscription, data
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validity period, etc. DCPS provides flexibility to the developers for defining the different

QoS requirements for the data in order to take control of each message, and developers

can concentrate only on the handling of data at each node, instead of on the transfer of

data among the nodes. The publishers and the subscribers use the DDS domain to send

and receive the data. DDS can be combined with any communication interface for com-

munication among instances of a distributed application hosted in a distributed environ-

ment. The DDS domain handles all of the communications among the publishers and the

subscribers according to the QoS specifications of the data. In the DDS communication

mechanism, each message is associated with a special data type called the topic. The sub-

scribers register to one or more topics of their interest. In DDS, a computing node can act

simultaneously as a publisher and as a subscriber for different topics (see Figure 5.3).

Figure 5.3

Data Distribution Services (DDS) Entities.
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The primary benefit of using the DDS framework for the distributed monitoring system

is that DDS is based upon the publish-subscribe mechanism that decouples the sender and

receiver of the data. There is no single point of bottleneck or of failure in communica-

tion. Additionally, the DDS communication mechanism provides scalability for number

of computing nodes and supports auto-discovery of the computing nodes in the distributed

deployment. Moreover, DDS ensures data delivery with minimum overhead and efficient

bandwidth utilization.

5.2.3 ARINC-653

ARINC-653 [45] software specification has been utilized in safety-critical real-time op-

erating systems (RTOS) that are used in avionics systems and recommended for space mis-

sions. ARINC-653 specifications present a standard Application Executive (APEX) kernel

and its associated services in order to ensure spatial and temporal separation among vari-

ous applications and monitoring components in integrated modular avionics. ARINC-653

systems (see Figure 5.4) group multiple processes into spatially and temporally separated

partitions. Multiple partitions (or one) are grouped to form a module (i.e. a processor),

and one or more modules form a system. These partitions are allocated in a predetermined

chunk of memory. ARINC-653 specifications provide two useful characteristics to the

executing partitions: spatial partitioning and temporal partitioning.

Spatial partitioning [79] ensures that an ARINC-653 partition uses an exclusive region

from the memory. This memory partitioning ensures that a faulty process from a parti-

tion does not corrupt the data structures of other processes executing in other partitions.
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Figure 5.4

ARINC-653 Architecture.

This feature is utilized in avionics systems for separating the components of different crit-

icality [73]. Memory management hardware guarantees memory protection by allowing a

process to access only the part of the memory that belongs to the partition, which hosts the

same process.

Temporal partitioning [79] ensures that multiple partitions use a common processing

resource at different times through a fixed periodic schedule. This fixed periodic schedule

is generated or supplied to RTOS in advance for the sharing of resources among the parti-

tions. This deterministic scheduling scheme ensures that each partition gains access to the

computational resources within its execution interval according to the scheduling scheme.

Additionally, deterministic scheduling guarantees that the partition’s execution will be in-

terrupted as soon as the partition’s execution interval is finished. The current partition will

be moved to the dormant state; the next partition as per the scheduling scheme will be

allowed to access the computing resources. All shared hardware resources are managed by
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the partitioning OS to guarantee that the resources are freed as soon as the time slice for

the partition expires.

ARINC-653 architecture ensures fault-containment through functional separation among

applications and monitoring components. In this architecture, partitions and their process

can only be created during the system initialization. Processes can not be created dynam-

ically, when the system is in execution. Additionally, users can configure the real-time

properties (priority, periodicity, duration, soft/hard deadline, etc.) of the processes and

partitions during their creation. These partitions and processes are scheduled and strictly

monitored for possible deadline violations. Processes of the same partition share data and

communicate using intra-partition services. Intra-partition communication is performed by

using buffers to provide a message passing queue and blackboards to read, write, and clear

single data storage. Two different partitions communicate by using inter-partition services,

which use ports and channels for the sampling and queueing of the messages. The syn-

chronization of processes related to the same partition is performed through semaphores

and events [79].

The ARINC-653 Emulation Library [73] (available to download from [22]) provides

a UNIX based implementation of ARINC-653 interface specifications. The ARINC-653

Emulation Library is also responsible for providing temporal partitioning among parti-

tions, which are implemented as Linux Processes. This library provides process and time

management services as described in the ARINC-653 specifications.
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5.2.4 Ruby on Rails

Rails [33] is a web application development framework that uses the Ruby program-

ming language [32]. Rails uses Model View Controller (MVC) architecture for application

development. MVC divides the responsibility of managing the web application in three

components: Model: It contains the data definition and manipulation rules for the data.

Model maintains the state of the application by storing data in the database. Views: View

contains the presentation rules for the data and handles visualization requests made by the

application according to the data present in the model. View never handles the data but

interacts with users in various ways in order to help users visualizing the data. Controller:

Controller contains rules for processing the user input, testing, updating, and maintain-

ing the data. A user can change the data by using controller while views will update the

visualization of the data to reflect the changes.

The sequence of events while accessing a rails application over a web interface are

shown in Figure 5.5. In a rails application, an incoming client request is first sent to a router

that finds the location of the application and parses the request to find the corresponding

controller (method inside the controller) that will handle the incoming request. The method

inside the controller can look into the data of request, can interact with the model if needed,

and can invoke other methods according to the nature of the request. Finally, the method

sends information to the view, which renders the browser of the client with the result.

In “RFDMon,” a web service is developed to display the measurements stored in the

database, which are collected from the distributed infrastructure through various monitor-

ing sensors. The schema information of the database is shown in Figure 5.6. This database
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Figure 5.5

Rails and Model View Controller (MVC) Architecture Interaction.

contains information related to clusters, nodes in a cluster, node states, measurements from

various sensors on each node, MPI and PBS related information for scientific applications,

web application performance statistics, and process accounting logs.

5.3 Other Distributed Monitoring Systems

Various distributed monitoring systems have been developed by industry and research

communities in the past. Ganglia [13], Nagios [24], Zenoss [44], and Nimsoft [26] are

among the most popular enterprise products used for monitoring distributed systems.

Ganglia [13] is developed on the concept of a hierarchical federation of clusters. In this

architecture, multiple nodes are grouped as a cluster, which is attached to a module, and

then multiple clusters are again grouped under a monitoring module. Nodes and applica-

tions utilize a multi-cast based listen-announce protocol for sending their measurements to

all of the other nodes. The primary advantage of Ganglia is the auto-discovery of the nodes,

easy portability, manageability, and the aggregation of cluster measurements at each node.
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Figure 5.6

Schema of Monitoring Database (PK = Primary Key, FK = Foreign key).
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Nagios [24] is developed on a plug-in based agent-server architecture, where agents can

report the abnormal events from the computing nodes to the server node (administrators)

through email, SMS, or instant messages. Nagios consists of three components- Plug-

in: These small modules are placed on the computing nodes and configured to monitor

a resource. Plug-ins forward the measurements to the Nagios server module over SNMP

interface. Scheduler: This is the administrator component that checks the plug-ins and

takes corrective actions if needed. GUI: This is a web-based interface that displays the

measurements from the system with various buttons, sounds, and graphs.

Zenoss [44] is a model-based monitoring solution that has a comprehensive and flexible

approach of monitoring with an extremely detailed GUI interface. It is an agentless mon-

itoring approach, where the central monitoring server collects measurements from each

node over the SNMP interface through ssh commands. In Zenoss, the computing nodes

can be discovered automatically and monitored according to their types (Xen, VMWare,

etc.). This characteristic ensures appropriate and complete monitoring by using pre-defined

templates, thresholds, and event rules. Nimsoft Monitoring Solution [26](NMS) offers a

light-weight, reliable, extensive, and GUI based monitoring of the entire infrastructure.

NMS uses a message BUS for the exchange of messages among the applications residing

in the infrastructure. These applications (or components) are configured with the help of a

software component (HUB) and are attached to the message BUS. The monitoring activity

is performed by small probes and the measurements are published to the message BUS by

software components (ROBOTS) deployed over each managed device. NMS also provides
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an Alarm Server for alarm monitoring and a GUI portal to visualize the comprehensive

view of the system.

These distributed monitoring approaches are significantly scalable in the number of

nodes, responsive to the changes at the nodes, and comprehensive in the number of param-

eters. However, these approaches do not support restrictions on the resources consumed

by the monitoring framework, fault containment in the monitoring system, and expand-

ability of the monitoring approach for new parameters in the already executing monitoring

system. Additionally, these approaches are stand alone and are not easily extendible to

associate with other modules that can perform fault diagnosis for the infrastructure at dif-

ferent granularity (application level, system level, and monitoring level). Furthermore,

these monitoring approaches work in a client-server or host-agent manner (except NMS)

that require the direct coupling of two entities, where one entity has to be aware of the

location and identity of the other entity.

A distributed monitoring system “RFDMon” is developed in this dissertation to mon-

itor system resources, hardware health, node availability, scientific application status, and

application performance statistics in a comprehensive manner. RFDMon is easily scal-

able with the number of nodes because it is based upon the data centric publish-subscribe

mechanism. Also, in the developed monitoring system, new sensors can be easily added

to increase the number of monitored parameters. RFDMon is fault tolerant with respect to

faults in the monitoring system due to partial outages. It can self-configure (Start, Stop, and

Poll) the sensors and it can be applied in the distributed systems with heterogeneous nodes.

The major benefit of using this monitoring system is that the total resource consumption by
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the sensors can be limited by applying ARINC-653 scheduling policies. Moreover, due to

the spatial isolation features of the ARINC-653 emulation library, the monitoring system

will not corrupt the memory area or data structures of applications, which are executing

on the node. Additionally, RFDMon has a small computational overhead, which can be

further lowered by using ARINC-653 scheduling policies. The developed web service in

monitoring system helps in visualizing the various resource utilization, hardware health,

and process state on different computing nodes. Therefore, an administrator can easily find

the location and possible causes of the fault in the system.

5.4 RFDMon System Architecture

The developed monitoring system “RFDMon” is based upon the data centric publish-

subscribe communication mechanism. Modules (or processes) in the monitoring system

are separated from each other through by using spatial locality as described in section 5.2.

Architecture of “RFDMon” is shown in Figure 5.7. The developed monitoring system has

following key concepts and components.

5.4.1 Sensors

Sensors are the primary components of the monitoring system. These are lightweight

processes that monitor a device on the computing nodes and read it periodically or aperi-

odically to get the measurements. These sensors publish the measurements under a topic

(described in next subsection) to the DDS domain. The monitoring system contains various

types of sensors, which are described in Section 5.5.
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Figure 5.7

Architecture of the “RFDMon” Monitoring System.

5.4.2 Region

The developed monitoring system organizes the nodes in Regions (or clusters). Nodes

can be homogeneous or heterogeneous. Nodes are combined only logically; these nodes

can be located in a single server rack or on a single physical machine (in the case of virtu-

alization). However, physical closeness is recommended to combine the nodes in a single

region in order to minimize the unnecessary communication overhead in the network.

5.4.3 Local Manager

The Local Manager is a module that is executed as an agent on each computing node of

the distributed infrastructure. These agents are executed on each node with the knowledge

of its pre-defined region name. However, these agents are not provided with any informa-
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tion related to the other nodes or the configuration of the region. The primary responsibility

of the local manager is to set up a sensor framework on the node.

5.4.4 Regional Leader

Among multiple local manager nodes that belong to the same region, there is a local

manager node which is selected as the Regional Leader for collecting sensor measurements

from other local managers and updating the monitoring database. The regional leader is

also responsible for updating the changes in the state (UP , FRAMEWORK DOWN ,

DOWN ) of various local manager nodes. Each local manager is supplied with pre-defined

URLs to the Ruby on Rails web service for database updates. This state or and measure-

ment update is performed over an http interface by using “libcurl” library [8]. However,

these URLs are used by only the local manager, which is selected as a regional leader. Once

a regional leader terminates, a new leader will be selected for that particular region. The

selection of the regional leader is completed by “Global Membership Manager” module as

described in Section 5.4.7.

5.4.5 Topics

Topics are the primary unit of information exchange in the DDS domain. Details about

the type of topic (structure definition) and key values (keylist) to identify the different

instances of the topic are described in an interface definition language (IDL) file [28].

CORBA IDL files are used to promote the interoperability among the systems developed

in different programming languages (e.g., C, C++, Java, etc.) that use the same interface.
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Keys can represent an arbitrary number of fields in the topic. These topics are categorized

in the following categories based upon their content.

• MONITORING INFO: System resource and hardware health monitoring sensors
publish measurements under the monitoring info topic.

• HEARTBEAT: The Heartbeat sensor uses this topic to publish heartbeat of comput-
ing node in the DDS domain to notify the monitoring system that the node is still
attached to the monitoring system. All nodes, which are listening to the HEART-
BEAT topic, can keep track of the existence of other nodes in the DDS domain
through listening to these heartbeats.

• NODE HEALTH INFO: When a regional leader node (described in Section 5.4.4)
detects changes in the state (UP,DOWN,FRAMEWORK DOWN ) of other
nodes through a change in their heartbeat, it publishes the NODE HEALTH INFO
topic to notify all of the other nodes about changes in the status of the node.

• LOCAL COMMAND: This topic is used by the regional leader to send the control
commands to other local managers in order to start, stop, or poll the monitoring
sensors for publishing the measurements.

• GLOBAL MEMBERSHIP INFO: This topic is used for communication between lo-
cal managers and the global membership manager (described in Section 5.4.7) for
selection of regional leader and for providing information related to the existence of
the regional leader to other local managers.

• PROCESS ACCOUNTING INFO: The process accounting sensor reads process ac-
counting records from the system and publishes these records under this topic.

• MPI PROCESS INFO: This topic is used to publish the execution state (STARTED,
ENDED, KILLED) and MPI or PBS information of scientific applications and their
parallel tasks executing on the computing nodes.

• WEB APPLICATION INFO: This topic is used to publish the performance statistics
of the web applications in DDS domain. These performance statistics can include
the average response time, heap memory usage, the number of JAVA threads, and the
number of pending requests inside the application.

5.4.6 Topic Managers

Topic Managers are classes, which create a subscriber or publisher for a pre-defined

topic. This publisher publishes the data received from various sensors under the same topic
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name. The subscriber receives data from the DDS domain under the same topic name and

delivers it to the underlying application for further processing.

5.4.7 Global Membership Manager

The Global Membership Manager (GMM) module is responsible to maintain the mem-

bership of each node for a specific region and for the selection of a regional leader. Once

a local manager comes online on a node, it first contacts the GMM module with node’s

region name by using GLOBAL MEMBERSHIP INFO topic to get the information re-

garding the regional leader. GMM module replies with the name of regional leader (if a

leader exists) or assign the new node as regional leader. The GMM module updates the

leader information in a file (“REGIONAL LEADER MAP.txt”) on disk in colon separated

format (RegionName:LeaderName). When a local manager sends message to the GMM

module that its regional leader is dead, the GMM module selects a new leader for that

region and replies to the local manager with the leader name.

This leader re-selection functionality enables the fault tolerant nature in the monitoring

system with respect to the regional leader, which ensures a periodic update of the infras-

tructure monitoring database with measurements, even in case of leader (or node) failure.

The leader selection for the region is performed by a single GMM module, which ensures

the presence of only one leader in a region. Because the leader selection or re-selection

is performed by communication between only two nodes, this process is unaffected by the

size of the region. The communication delay of the message exchange in the DDS domain

is the only factor that can delay the leader selection process. Additionally, other more so-
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phisticated algorithms can be easily plugged into the monitoring system by modifying the

GMM module for leader selection.

The GMM module is executed through a wrapper executable GMM Monitor as a child

process. The GMM Monitor keeps track of the execution state of the GMM module

and starts a fresh instance of the GMM module if the previous instance terminates due

to some error. The new instance of the GMM module receives updated data from “RE-

GIONAL LEADER MAP.txt” file. This wrapper executable provides the fault tolerant

abilities in the framework with respect to the GMM module.

The UML class diagram in Figure 5.8 shows the relation among all of these modules.

The next section will describe the details regarding each sensor, which is executing at each

local node.

5.5 Sensor Implementation

The developed monitoring system contains various software sensors to monitor system

resources, network resources, node states, the scientific application execution state, and

performance statistics of web applications (see Table 5.1). These sensors can be periodic

or aperiodic depending upon the implementation and the type of resources. Periodic sen-

sors are implemented for system resources and performance data while aperiodic sensors

are used for the MPI process state and other system events that get triggered only on avail-

ability of the measurements. These sensors are executed as an ARINC-653 process on top

of the ARINC-653 emulator [73]. Sensors are constructed with the following attributes:

• Name: Name of the sensor (e.g., UtilizationAggregatecpuScalar).

• Source Device: Name of the device to monitor for the measurements (e.g., “/proc/stat”).
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Figure 5.8

Class Diagram of the “RFDMon” Monitoring System.
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• Period: Periodicity of the sensor (e.g., 10 seconds for periodic sensors and −1 for
aperiodic sensors).

• Deadline: A sensor has to finish its measurement within a specified deadline. A
HARD deadline violations are considered as an error. The HARD deadline violations
are handled by the restarting the sensors while SOFT deadline violation are handled
through warnings.

• Priority: The sensor priority indicates the priority of scheduling the sensor over other
processes in the system. In general, normal (base) priority is assigned to the sensor.

• Dead Band: The sensor reports the measurements only if the difference between
current measurement and the previous recorded measurement becomes greater than
the specified sensor dead band. It reduces the number of sensor measurements in the
DDS domain if sensor measurement is changing slightly.

Sensors support three types of commands for publishing the measurement: START,

STOP, and POLL. The START command starts the already initialized sensor to start pub-

lishing the measurements. The STOP command is executed to stop the sensor thread from

publishing the measurement while the POLL command is executed to get the previous

measurement from the sensors. Sensors publish the data according to the predefined topic

to the DDS domain (e.g., MONITORING INFO). The life cycle and various functions of

a typical sensor (“CPU utilization Sensor”) is described in Figure 5.9. Sensors are catego-

rized based upon their functionality as follows.

5.5.1 Resource Utilization Monitoring Sensors

These sensors monitor the utilization of the system resources: CPU, RAM, Disk, Swap,

and Network. These sensors are periodic in nature, follow SOFT deadlines, contain normal

priority, and monitors system devices (e.g., /proc/stat) in order to collect the measurements.

These sensors publish the measurements under the MONITORING INFO topic.
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Table 5.1

List of Monitoring Sensors

Sensor Name Period
(Seconds)

Description

CPU Utilization 30 Aggregate utilization of all the CPU
cores.

Swap Utilization 30 Swap space usage.
Ram Utilization 30 Memory usage.
Hard Disk Utilization 30 Disk usage.
CPU Fan Speed 30 Speed of CPU fan that helps keep the

processor cool.
Motherboard Fan Speed 10 Speed of motherboard fan that helps

keep the motherboard cool.
CPU Temperature 10 Temperature of the processors.
Motherboard Tempera-

ture
10 Temperature of the motherboard.

CPU Voltage 10 Voltage of the processor.
Motherboard Voltage 10 Voltage of the motherboard.
Network Utilization 10 Bandwidth utilization of each network

card.
Network Connection 30 Number of TCP connections.
Heartbeat 30 Periodic liveness messages.
Process Accounting 30 Periodic sensor that publishes the com-

mands executed on the system.
MPI Process Info -1 Aperiodic sensor that reports the change

in state of the MPI Processes.
Web Application Info -1 Aperiodic sensor that reports the perfor-

mance data of Web Application.
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Figure 5.9

Life Cycle of a CPU Utilization Sensor.
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5.5.2 Hardware Health Monitoring Sensors

These sensors monitor the system hardware components for the applied voltage and

temperature. E.g, CPU Fan Speed, CPU Temperature, Motherboard Temperature, and

Motherboard voltage. These sensors are periodic, follow SOFT deadlines, and contain

normal priority. These sensors use Intelligent Platform Management Interface (IPMI) in-

terface [19] to record the measurements. These sensors publish these recorded measure-

ments under the MONITORING INFO topic.

5.5.3 Node Health Monitoring Sensors

Each local manager executes a Heartbeat sensor that periodically publishes its own

node’s name to the DDS domain under the topic “HEARTBEAT” to inform other nodes

about its existence in the monitoring system.

5.5.4 Scientific Application Health Monitoring Sensor

This sensor monitors the execution state (STARTED, KILLED, ENDED) of scientific

applications and their various jobs executing in parallel environment. In this monitoring

systems, a wrapper application (SciAppManager) is developed, which executes the actual

scientific application (e.g., SciAPP in Figure 5.10) internally as a child process. “MPIrun

command” is issued to execute the SciAppManager application from master nodes in the

cluster (see Figure 5.10). The SciAppManager writes the execution state information of the

scientific application in a POSIX message queue that exists on each node. The scientific

application sensor reads messages from that POSIX queue and publishes messages to the

DDS domain under MPI PROCESS INFO topic.
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5.5.5 Web Application Performance Monitoring Sensor

This sensor works similarly to the scientific application health monitoring sensor as de-

scribed in Figure 5.10. This sensor keeps track of performance statistics of the web appli-

cation through the web server performance logs written into a POSIX message queue (dif-

ferent queue from SciAppManager). This sensor reads messages from the message queue

and publishes the message to the DDS domain under the WEB APPLICATION INFO

topic. In the developed monitoring system, a web application logs its performance data

in a POSIX message queue that exists on each node. A generic structure of performance

logs is defined in the sensor framework that includes average response time, heap memory

usage, number of JAVA threads, and pending requests inside the web server.

Figure 5.10

Architecture of the Scientific Application Health Monitoring Sensor.
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5.6 Experiments Related to Monitoring System

A set of experiments have been performed to show the system resource utilization and

fault-adaptive properties of the developed monitoring system. During these experiments,

the monitoring system is deployed in a Linux environment (2.6.18− 274.7.1.el5xen) that

consists of five nodes (ddshost1, ddsnode1, ddsnode2, ddsnode3, and ddsnode4). The

ruby on rails based web service and the MYSQL database are hosted on the ddshost1

node. These experiments have been performed to measure the computational overhead of

executing the monitoring system and to demonstrate the fault-tolerant and self-configuring

properties of the monitoring system in case of failures in the monitoring system itself.

In one of these experiments, monitoring system were started on all of the nodes (ddshost1,

and ddsnode1...4) one by one with a random time interval. Once all the nodes started ex-

ecuting the monitoring system, the local manager on a few nodes were killed through

“KILL” system call. During this experiment, the CPU and RAM consumption by the local

manager at each node is monitored through “TOP” system command. Results from the

experiment are shown in Figure 5.11, Figure 5.12, and Figure 5.13.

Figure 5.11 shows the CPU and RAM utilization at each node during the experiment.

It is evident from Figure 5.11 that CPU utilization is mostly in the range of 0 to 1 percent,

with occasional spikes. However, even in the case of spikes, CPU utilization is under

ten percent. Similarly, RAM utilization by the monitoring framework is less than 2%.

These results clearly indicate that overall resource overhead of the developed monitoring

approach “RFDMon” is extremely low. As mentioned earlier, it is possible to limit even
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Figure 5.11

CPU and RAM Utilization at various Nodes.

this small resource usage by using the temporal partitioning practices from ARINC-653

specifications to allocate CPU resources.

The transition of various nodes between states UP and FRAMEWORK DOWN is

shown in Figure 5.12. According to Figure 5.12, ddshost1 was started first, then followed

by ddsnode1, ddsnode2, ddsnode3, and ddsnode4. ddshost1 was selected as the regional

leader in the beginning. Approximately, at time sample 310, the local manager of the host

ddshost1 was killed; therefore, its state has been updated to FRAMEWORK DOWN. Sim-

ilarly, the states of ddsnode2 and ddsnode3 were also updated to FRAMEWORK DOWN

once their local managers were killed on time sample 390 and 410, respectively. The local

manager at ddshost1 was again started at time sample 440; therefore its state was updated

to UP at the same time. Figure 5.12 also represents the nodes, which were regional lead-

ers during the experiment. According to Figure 5.12, initially ddshost1 was the leader of

the region, while as soon as the local manager at ddshost1 was killed at time sample 310

(see Figure 5.12), ddsnode4 was elected as the new leader of the region according to the
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Figure 5.12

State Transition of the Nodes and Leaders of the Distributed Monitoring System.
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procedure specified in Section 5.4.7. Similarly, when the local manager of the ddsnode4

was killed at time sample 520 (see Figure 5.12), ddshost1 was again elected as the leader

of the region. From Figure 5.12, it is clearly evident that as soon as there was a fault

in the monitoring system related to the regional leader, a new regional leader was elected

instantly without any further delay. This specific feature of the monitoring system exhibits

that it is robust with respect to failures of the regional leader and that it can adapt to the

faults in the monitoring system instantly with minimum delay.

Figure 5.13

CPU Utilization at node ddsnode1 during the Experiment.

The sensor framework at ddsnode1 was allowed to execute during the complete exper-

iment (see Figure 5.12), and no fault was introduced in this node. The primary purpose

of executing this node continuously was to observe the impact of introducing faults in

the framework over monitoring capabilities of the monitoring system. In the most ideal

scenario, the entire set of measurements related to ddsnode1 should be reported to the cen-

tralized database without any interruption even in the presence of faults (leader re-election
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and nodes going out of the monitoring system). Figure 5.13 shows that the CPU uti-

lization of ddsnode1 from the monitoring database as reported by regional leader through

CPU monitoring sensor from ddsnode1. According to Figure 5.13, monitoring data from

ddsnode1 was collected successfully during the entire experiment. Even in the case of Re-

gional Leader re-election at time samples 310 and 520 (see Figure 5.12), only one or two

(max) measurement samples are missing from the database (see Figure 5.13. Henceforth,

it is evident that there is a minimal impact of faults in the monitoring system itself over its

monitoring functionality.

5.7 Summary

In this chapter, the design aspects of “RFDMon” and basic concepts of OpenSplice

DDS, ARINC-653, and Ruby on Rails were described. Additionally, it was shown that

“RFDMon” can efficiently and accurately monitor the system resource consumption, sys-

tem health, application performance, and scientific application execution state in a com-

prehensive manner with minimum computational overhead. Furthermore, self-configuring

and fault-tolerating properties of “RFDMon” were demonstrated through experiments.
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CHAPTER 6

A DISTRIBUTED CONTROL APPROACH FOR PERFORMANCE MANAGEMENT

OF A WEB SERVICE DEPLOYMENT

In this chapter, a distributed control-based performance management approach is pre-

sented that can manage a general class of web services deployed in distributed computing

environments, where performance of the web service can be tuned by changing a finite set

of control inputs. This approach is developed by using interaction balance principles that

have been already applied to various performance management problems in the large scale

engineering systems. In this chapter, the proposed approach is applied on a web service

hosted in a distributed environment for power and response time management.

6.1 Related Work

Control-based methods have recently emerged as a promising way to automate certain

system management tasks encountered in distributed computing systems. Algorithms have

been developed for optimal control of large scale systems by decomposing the large sys-

tems into a number of interconnected subsystems. Thus, the system wide optimization

problem is also divided into a number of interconnected subsystem optimization problems.

These subsystems coordinate with each other through a coordinator by using interaction

inputs and achieving the system wide performance objectives. The coordinator receives
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the solution Soli(k) (∀i ∈ N ) of the subsystem level problems and updates the interaction

inputs βi(k) (∀i ∈ N ) as shown in Figure 6.1. The coordinator modifies the activities at the

subsystems to find the optimal solution for the entire system. The definition and relevant

parameters of a subsystem are shown in Figure 6.2. These “decomposition and coordina-

tion” strategies are primarily implemented in two ways: Interaction Balance (Goal Coordi-

nation) and Interaction Prediction (Model Coordination) [143] (shown in Figure 6.1). Both

of these approaches have been applied successfully to a number of large scale systems,

where subsystems are “coupled with each other in terms of both the subsystem dynamics

and the system wide performance objectives”. In the interaction balance method, the co-

ordinator modifies the objective functions of the subsystems using interaction inputs βi(k)

iteratively until the difference between actual interface inputs (interactions) and demanded

by the subsystems become zero or small tolerable values. In the case of model coordi-

nation, the coordinator predicts the value of interface inputs Ẑi(k) among subsystems,

compares them with actual values Zi(k), and modifies the values of predicted interface

inputs Ẑi(k) again until the error in prediction of the interface inputs reaches zero or small

tolerable values.

6.1.1 Advanced Large Scale Control Algorithms and Their Applications

In past, interaction balance and model coordination approaches have been utilized ex-

tensively to develop distributed control algorithms for variety of linear and non linear con-

trol system problems with applications in electrical systems, chemical plants, and manu-

facturing industry [143]. Designing a specific type of distributed control approach depends
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Figure 6.1

Interaction Balance and Interaction Prediction Approach.

Figure 6.2

The i-th Subsystem and its Parameters.
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upon the type of interaction among the subsystems, the system dynamics, the nature of

exchanged information among the subsystems, and the control techniques used inside the

subsystem [99]. An asynchronous and parallel version of these control algorithms are

presented in [50] for river pollution control and gas absorber tower problems by using in-

teraction balance and interaction prediction approaches. These modified versions of the

large scale control algorithms show substantial savings in computation time in the given

conditions and the possible methods to reduce the communication delay. Another approach

of faster convergence in interaction error vector are presented in [131, 132] by using the

gradient of the subsystem state, the control input, and the interaction vector to calculate the

Lagrange coefficients.

A hierarchical optimization approach by using neural network is applied to a nonlin-

ear discrete large scale power control systems in [84], where the proposed neural network

is decomposed into coordinator and subsystem level sub-networks. Also, the subsystem

level system model equations and the operating constraints are embedded into the subsys-

tem level neural network. This approach shows significant improvement in computational

overhead compared to the traditional interaction balance approaches developed earlier. In

a similar approach, a reinforcement learning (RL) based implementation of goal coordina-

tion algorithm is developed in [133] for intelligent coordination among a set of nonlinear

subsystems. In this approach, a neuro-fuzzy based RL approach is developed for supervi-

sory coordination at higher level of large scale control systems deployed in a hierarchical

manner. The subsystem level controllers are also developed using neural network and
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their control problem is solved using neuro-regulators. This approach shows a significant

reduction in the number of interactions between the coordinator and the subsystems.

A multi agent planning system implementation of goal coordination approach is de-

veloped in [77] to solve a system wide complex optimization problem while each of these

autonomous subsystems have their own set of goals. This approach extends goal coordi-

nation with resource coordination among the autonomous subsystems through a resource

coordinator. The resource sharing is performed only when the utility (cost benefit analy-

sis) of acquiring the resource by an agent is positive. This approach demonstrates that the

satisfaction level of global objectives can be increased significantly if goal coordination

approach is coupled with resource coordination approaches. An application of distributed

control algorithm with receding horizon is described in [75], where subsystem are coupled

together in state vectors for multi-vehicle formation. This approach demonstrates the re-

quirement of frequent and quick updates of the receding horizon updates and compatibility

constraints to reduce the error in assumptions made at a vehicle about location of other

neighboring vehicles in the formation. Another similar implementation of decentralized

receding horizon control is presented in [101] for coordination among multiple unmanned

autonomous vehicles (UAVs) for making a flight formation and avoid collision.

6.1.2 Large Scale Control Management in Web Service Environment

Researchers from academia and industry have recently addressed the coordination is-

sues among computing nodes of distributed web service deployment. These computing

nodes are coupled in only objective functions and constraints. There is no interaction
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among these subsystems for their individual system dynamics (state). A fully decentralized

and cooperative control approach is developed in [149] for managing power consumption

and SLAs of a distributed web service deployment. In this approach, the infrastructure

level optimization problem is decomposed into a set of low subsystem level optimiza-

tion problems. Each of the subsystem level controllers solve their subsystem level control

problem by using a model-based control approach to achieve subsystem wide goals. A

distributed model predictive control based approach is developed in [148], where sub-

systems are decoupled in system dynamics but coupled with linear constraints, additive

disturbances, and infrastructure level cost functions.

A hierarchical control approach is presented in [93] to solve the performance manage-

ment problem of a distributed web service in a hierarchical deployment. In this framework,

a limited look-ahead based controller is applied at each level of the hierarchy to manage the

interaction among lower level controllers by forecasting the operating environment param-

eters. This approach aggregates the control behavior of all of the lower level controllers

(till the leaf subsystem in the hierarchy) for making the control decision at a higher level

controller. Another hierarchical control approach is presented in [103] for utilizing the re-

gression tree and neural network based approximation technique to generate performance

models of a non linear application. This approach further utilizes these approximation

methods for dynamically learning the controller behaviour and making optimal resource

allocation decisions at multiple levels of the hierarchy with appropriate control inputs.

An approach for developing self-managing systems is presented in [155], where multi-

ple decentralized controllers form a dynamic overlay network for communication. These
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controllers share their local information with their neighbors to approximate the overall

system level state. These information are further used to optimize a CPU intensive appli-

cation performance in a grid computing environment, which consists of a large number of

virtual machines.

All of the previous research efforts address the optimal resource allocation problem of

web service deployment in case of either low number of subsystems or a few levels in the

hierarchy. Approximation efforts for modeling the lower level controller behavior becomes

a major bottleneck in the case of increasing number of hierarchical levels. Similarly, com-

munication overhead among the subsystems increases drastically with the increase in the

number of subsystems. As a solution to these problems, a novel distributed control-based

performance management approach is developed in this dissertation by utilizing interaction

balance principles, which has already been applied for management of large scale electrical

and manufacturing systems. The developed distributed control approach neither requires

the approximate behavior modeling of lower level controllers at a higher level nor requires

communication among the subsystems for generating the system wide view. Additionally,

each subsystem level controller gives priority to both the local and global system objectives

while computing the appropriate control inputs.

In this chapter, a distributed control structure is developed by utilizing the interaction

balance (or goal coordination) based management approach for managing the web service

systems hosted in a distributed environment, where each web service node is decoupled

from other nodes in system dynamics, while coupled in terms of the overall infrastructure

wide operating cost functions. This distributed control approach derives an optimal de-
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ployment configuration of subsystems that maximizes the infrastructure profitability while

keeping the system operation as per SLA guidelines.

6.2 A Distributed Web Service Deployment

The scope of the optimization problem considered here is a typical web service de-

ployed over a cluster of N computing nodes, referred to as subsystems from now onwards.

These N subsystems host instances of the web service for computational efficiency, de-

sign simplifications, ease of maintenance, and redundancy purposes. This large scale web

service system dynamics can be presented as the following state space dynamics,

q(k + 1) = Φ(q(k), u(k), ω(k)) (6.1)

where q(k) represents the queue size of the cluster, u(k) represents the set of control inputs

to the cluster, and ω(k) represents the environment input to the cluster at time sample k.

The system model (state update function) Φ captures the relationship between the observed

system queue state q(k), the control inputs u(k) that adjust system parameters, and the

environment input ω(k), which can not be controlled.

Now, we can consider the overall system state of the cluster as a composition of N

subsystems. For example, q(k) = [q1(k), q2(k), ....., qi(k), ..., qN(k)], u(k) = [u1(k),

u2(k), ....., ui(k), ..., uN(k)], and ω(k) = [ω1(k), ω2(k), ....., ωi(k), ...,ωN(k)]. Here,

qi(k) ∈ Xi ⊆ R is the system state at time sample k, the set of user controlled system

inputs is ui(k) ∈ Ui ⊆ R, and ωi(k) ∈ Ωi ⊆ R is the environment input at time k.

ωi(k) represents a fraction αi(k) of the workload ω(k) incident at subsystem i during the
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time sample k, where
N∑
i=1

αi(k) = 1. Xi represents the set of feasible system states in

the subsystem i, Ui represents the set of permissible control input for the node i, and Ωi

denotes the feasible values of environment inputs. Since the current value of environment

input ω(k) cannot be measured until the next sampling instant k + 1, the system dynamics

can only be captured by using a system model with estimated values of environment input

ω̂(k) as

q̂i(k + 1) = Φi(qi(k), ui(k), ω̂(k), αi(k)) (6.2)

Equation 6.2 for the subsystem i can be further described for the next queue size and

corresponding response time

q̂i(k + 1) =

[
qi(k) + ω̂(k)αi(k)− ui(k)

umi ĉi(k)
T

]+
(6.3)

and

r̂i(k + 1) = (1 + q̂i(k + 1))
ĉi(k)umi
ui(k + 1)

(6.4)

where [a]+ = max(0, a), qi(k) is the queue level of the subsystem i at time sample k,

ω̂i(k) is the expected arrival rate of http requests, q̂i(k + 1) is the expected queue size of

the subsystem, r̂i(k + 1) is expected response time of the subsystem, umi is the maximum

supported CPU core frequency in the subsystem i, and ĉi(k) is the predicted average service

134



www.manaraa.com

time required per request at the maximum CPU core frequency in subsystem i. T is the

sample time for the controller.

Next, the operating cost J(k) of the web service cluster at time sample k can be repre-

sented as summation of the SLA violation penalty and energy cost of appropriate control

inputs at each subsystem while in operation. It can be further represented as

J(k) =
N∑
i=1

Ji(k) =
N∑
i=1

H∑
k=1

‖qi(k + 1)− qs‖Ai
+ ‖ri(k + 1)− rs‖Bi

+

∥∥∥∥ui(k)

umi

∥∥∥∥
Ci

(6.5)

whereAi,Bi, andCi are positive weights for the subsystem i. qs represents the recommend

queue size of the subsystems and rs represents the recommended response time according

to SLA guidelines. Here, k = 1, 2, .., H represents the sampling instants in the trajectory

of the system operation. According to this quadratic cost function, subsystems are also

penalized for the number of the requests remaining in the queue qi(k). Therefore, qs is

generally set to 0 for the complete depletion of the queue. Additionally, the power con-

sumption of a computing system can be considered as a function of its control input (CPU

core frequency in this case) as Ei(k) =
∥∥∥u(k)umi

∥∥∥
Ci

.

6.3 Distributed Model Predictive Control Problem

The overall optimization problem for the web service deployment over N subsystems

can be described as minimizing the overall cost function J described in Equation 6.5, while

satisfying the system state and control input constraints of the subsystems.
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According to Equation 6.5, the overall cost J is the sum of the operating cost Ji at

each subsystem. However, the operating cost Ji at the subsystem i is indirectly coupled

with other subsystems j (∀j ∈ N , j 6= i) through the workload fraction αi(k) (where

ωi(k) = αi(k)ω(k)) as presented in Equation 6.3. Therefore, changes in the value of

αi(k) at the subsystem i not only impacts the cost function Ji(k) at subsystem i, but also

the cost function at all other subsystems Jj(k) (∀j ∈ N , j 6= i). For example, a higher

value of αi(k) at subsystem i may result in a higher value of qi(k) and ri(k) according

to system dynamics in Equation 6.3 and 6.4, which in turn results in increased Ji(k).

However, an increased value of αi(k) at subsystem i results in lower values of αj(k) at

subsystem j (∀j ∈ N , j 6= i), which decreases the operating cost Jj(k) at subsystem j. As

a result, variation in αi(k) (∀i ∈ N ) can impact the overall cost function J(k) positively

or negatively.

In a typical distributed deployment of the web services, incoming http requests enter

into the deployment through a common shared buffer (or queue) that exists at a “Dis-

patcher” module of the deployment (see Figure 6.3). This dispatcher module forwards

the incoming requests to the subsystems, which host instances of the web service. There-

fore, incoming http requests are first queued at the dispatcher in the global queue (Q) and

then at the subsystem level in the local queue (qi). Now, the requests queued in the global

queue can be processed by any subsystem that has system resources available, while re-

quests queued inside the local queue at the subsystem i (∀i ∈ N ) can only be processed by

the subsystem i. So, these subsystems should be discouraged from increasing their local

queue. This can be done by applying a higher penalty on local queue size as compared to
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the global queue size in the cost function. According to Equation 6.3, a higher value of the

work load fraction αi(k) received at the subsystem i may increase the local queue size at

the subsystem i. However, a higher value of αi(k) (∀i ∈ N ) results in the reduced global

queue at the “Coordinator”.

Hence, the overall optimization problem can be again described as “finding an optimal

set of control input u and workload fraction α for each subsystem i ([ui(k)αi(k)] ,∀i ∈ N)

to minimize the overall cost function J(k), while satisfying the operational constraints of

the subsystems and SLAs of the web service.”

6.4 A Distributed Control Approach using Interaction Balance Principle

In this approach, a large scale web service deployment is considered, which consists

of a cluster of N subsystems as shown in Figure 6.3. The incoming http requests from

different clients arrive at a common entry point of the deployment described as a “Coor-

dinator,” which forwards these http requests to the subsystems through the “Dispatcher”

module. According to Figure 6.3, “Coordinator” maintains a common global queue (Q)

for the incoming http requests. This global queue information is available to all of the

subsystems. During each time step k, the coordinator assigns a fraction αi(k) of requests

from the total requests (Q(k) + ω(k)) to the subsystem i (∀i ∈ N ), where, 0 ≤ αi(k) ≤ 1

and
N∑
i=1

αi(k) = 1. This fraction αi(k) value is supplied from the subsystems to the coor-

dinator, and it is dynamically updated after every time step based upon the requests made

by each subsystem. Additionally, no http requests will be assigned to a failed subsystem.
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Figure 6.3

The proposed Distributed-Control Approach

The schematic structure of the distributed controllers executing at each subsystem is

shown in Figure 6.5. An optimal control algorithm, which is based on the similar one

developed in Chapter 4 (Section 4.2.5), is executed inside each subsystem. However, this

control algorithm also considers the load fraction αi(k) while determining the optimal

values of the control inputs ui(k). The state update dynamics at the subsystem i can be

described in following equation.

q̂i(k + 1) = Φi (Q(k), qi(k), ui(k), ω̂(k), αi(k)) (6.6)

Equations for the next queue size, response time, and the global queue size as observed

at subsystem i can be further described as
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q̂i(k + 1) =

[
qi(k) + (Q(k) + ω̂(k))αi(k)− ui(k)

umi ĉi(k)
T

]+
(6.7)

r̂i(k + 1) = (1 + q̂i(k + 1))
ĉi(k)umi
ui(k + 1)

(6.8)

and

Q̂(k + 1) =

[
(Q(k) + ω̂(k))(1− αi(k)−

N∑
j=1,j 6=i

α∗j (k))

]+
(6.9)

where qi(k) is the local queue size of the system i, Q(k) is the global queue size at the

coordinator and ω̂(k) is the expected arrival rate of http requests at the cluster level. q̂i(k+

1) is the expected queue size of the subsystem i, r̂i(k + 1) is the expected response time

of the system, and ui(k) ∈ Ui is the CPU core frequency at time sample k (Ui is the finite

set of all possible CPU core frequencies that the subsystem can take). umi is the maximum

supported frequency in the subsystem i and ĉi(k) is the predicted average service time

(work factor in units of time) required per request at the maximum CPU core frequency. T

is the sample time for the controller. αi(k) is the fraction of total workload ω̂(k) received

at the subsystem i. The values of workload processed at subsystem j during time sample

k − 1 (j 6= i, αj(k − 1)) are received from the coordinator and used as α∗j (k) (j 6= i) in

Equation 6.9 at subsystem i.

Next, the operating cost of this cluster of N subsystems hosting web service instances

at time sample k for a look ahead horizon of H steps, can be represented as the summation
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of SLA violation penalty and energy cost of appropriate control inputs at each subsystem

and global queue size (Q) at the coordinator level. Therefore, operating cost can be further

represented as

J(k) =
H∑
k=1

[
‖Q(k + 1)−Qs‖G +

N∑
i=1

‖qi(k + 1)− qs‖Ai
+ ‖ri(k + 1)− rs‖Bi

+

∥∥∥∥ui(k)

umi

∥∥∥∥
Ci

]
(6.10)

where Ai, Bi, and Ci are positive weights for the subsystem i, while G is positive weight

for the global queue of the cluster.

6.4.1 Decomposition of the Overall Problem into N Sub Problems

The web service deployment considered here consists of N subsystems, which are

coupled only through the processed workload fractions (according to Equations 6.6 and

6.9) and cluster level cost function J(k). The overall cost function J(k) from Equation 6.10

can be further divided as sum of cost functions related to each subsystem Ji(k) (∀i ∈ N )

according to following equation.

J(k) =
N∑
i=1

Ji(k) =
H∑
k=1

N∑
i=1

[
‖Q(k + 1)−Qs‖G

N
+ ‖qi(k + 1)− qs‖Ai

+ ‖ri(k + 1)− rs‖Bi
+

∥∥∥∥ui(k)

umi

∥∥∥∥
Ci

]
(6.11)

In Equation 6.11, G
N

is a positive weight constant. Thus, it can be replaced by constant

Gi again, and Equation 6.11 can be rewritten as follows:
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J(k) =
N∑
i=1

Ji(k) =
N∑
i=1

H∑
k=1

[
‖Q(k + 1)−Qs‖Gi

+ ‖qi(k + 1)− qs‖Ai

+ ‖ri(k + 1)− rs‖Bi
+

∥∥∥∥ui(k)

umi

∥∥∥∥
Ci

]
(6.12)

Now, the interaction variable Zi(k) at the subsystem i can be represented in workload

fractions αi(k) (∀i ∈ N ) received from other subsystems j (∀j ∈ N , j 6= i) according to

following equation:

Zi(k) =
N∑

j=1,j 6=i

α∗j (k) (6.13)

and

αi(k) = 1− Zi(k) (6.14)

Therefore, the constraints at each subsystem i can be represented as:

Constraints: Zi(k)−
N∑

j=1,j 6=i

α∗j (k) = 0 (6.15)

or

1− αi(k)−
N∑

j=1,j 6=i

α∗j (k) = 0 (6.16)

Now the Lagrangian L(k) for the cost function J(k) can be written as sum of the

Lagrangian of each subsystem Li

L(k) =
N∑
i=1

Li(k) (6.17)
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where the Lagrangian of each subsystem Li can be represented as follows:

Li(k) = Ji(k) +
H∑
k=1

βi(k)

(
1− αi(k)−

N∑
j=1,j 6=i

α∗j (k)

)
(6.18)

where βi ∈ RH is a vector corresponding to the subsystem i that is extracted from the

Lagrange multipliers vector β received from the coordinator, where β ∈ RNH . The overall

problem of minimizing cost function J can be decomposed into N subsystem level prob-

lems of minimizing Li. Furthermore, the overall problem of minimizing the cost function

J can be decomposed in to N subsystem level problems in the following form:

min
q,u,α

Li(k) = Ji(k) +
H∑
k=1

βi(k)

(
1− αi(k)−

N∑
j=1,j 6=i

α∗j (k)

)
(6.19)

such that:

1− αi(k)−
N∑

j=1,j 6=i

α∗j (k) = 0 (6.20)

q̂i(k + 1) = Φi(Q(k), qi(k), ui(k), ω(k), αi(k)) (6.21)

Q(1) = 0 (6.22)

qi(1) = 0 (6.23)

The problem at the coordinator level can be expressed by updating the value of La-

grange multipliers βi(k), so that the interaction error or sum-squared error SSE (see

Equation 6.27) can become zero or minimized to a small tolerable value ε, where e is

the interaction error vector defined in Equation 6.24.
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Figure 6.4

Predictive Control Algorithm at each Subsystem.
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6.4.2 Optimizing the Subsystem Level problem using Model Predictive Control

At the subsystem level, the LagrangeLi is minimized using subsystem dynamics (Equa-

tion 6.7, 6.8, and 6.9) with control input [ui(k), αi(k)] constraints. We create a uniform

discretization Fi for the workload fraction αi. For example, Fi=[0.05,0.1,...,0.95,1.0]. The

optimal value of control inputs [ui(k), αi(k)] is computed that minimizes Li using the

following model predictive control based steps.

1. Use βli(k) and α∗(l)j (k) (where j 6= i) as received from coordinator to compute the
optimal sequence of (α

∗(l)
i (k), u

∗(l)
i (k)) over the horizon k ∈ [1, H] by using al-

gorithm shown in Figure 6.4, which minimizes Lagrange Li(k) in Equation 6.18
through a tree search method [48]. Here, l indicates the iteration instance between
the subsystem and the coordinator within time step k.

2. Forward the optimal values of α∗(l)i to the coordinator.

6.4.3 Solving the Coordinator Level problem using Conjugate Gradient Method

At the coordinator level, the goal is to update the values of Lagrange multipliers β in

order to decrease the sum-squared error SSE (see Equation 6.27), where interaction error

vector e is defined as,

eli(k) = 1−
N∑
j=1

α
∗(l)
j (k) (6.24)

el =

(
el1 el2 . . . eli . . . elN

)
T (6.25)

eli =

(
eli(1) eli(2) . . . eli(k) . . . eli(H)

)
T (6.26)

and

SSE = ‖el‖2 (6.27)
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Interaction error vector e is used as gradient to modify the Lagrange multipliers β(k)

using conjugate gradient method [143] as per following set of equations.

β(l+1)(k) = β(l)(k) + ξl dl(k) (6.28)

where ξl represents the step length and dl represents the search direction. dl(k) is calculated

by using following set of equations with d0 = e0.

dl+1(k) = −el+1(k) + σl+1 dl(k) (6.29)

σl+1 =
‖el+1‖2
‖el‖2

(6.30)

where ‖ · ‖2 denotes the (Cartesian) `2-norm.

The main steps of the algorithm at coordinator level are as follows:

1. Set the initial values of the Lagrange multipliers vector β and forward it to all of the
subsystems.

2. The coordinator uses the values of α∗i received from the subsystems to calculate the
interaction vector e by using Equation 6.24 and SSE by using Equation 6.27.

3. If SSE ≤ ε, stop and send the corresponding α(k) to the Dispatcher and the subsys-
tems (as Figure 6.3) for workload distribution among the subsystems, else go to the
next step.

4. Calculate the values of Lagrange multipliers β for the next iteration by using Equa-
tion 6.28, 6.29, and 6.30. Send this updated value of β to the subsystems for solving
the subsystem level optimization problem again. Increment l and jump to Step 2.

This exchange of information is shown in Figure 6.3.
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6.5 Evaluation of the Distributed Control Approach

The proposed distributed control approach for the management of the distributed web

service deployment can be evaluated based on following parameters.

6.5.1 Performance Parameters

6.5.1.1 Load Distribution Among Subsystems

In a typical web service deployment over a cluster of heterogeneous N subsystems,

each executing subsystem i should be assigned a fraction αi of the total incoming workload

entering into the cluster. In decentralized approaches, where a central entity of the cluster

is not determining the load fraction αi (where 0 < αi < 1 and
N∑
i=1

αi = 1) assigned to

the subsystems, these fractions should be determined by the subsystems themselves in a

cooperative manner. In this situation, these subsystems try to minimize their load share

αi to maximize their individual performance. However, in an ideal situation, these load

shares should be close to their relative measure of available system resources pi (i.e. αi ≈

pi) needed for processing the incoming workload. These system resources include CPU

frequency, memory, network bandwidth, etc., according to the characteristics of incoming

http requests..

6.5.1.2 Subsystem Resource Utilization

Another aspect of an ideal distributed management approach is to utilize resources of

each of the active subsystems equally if they are homogeneous or proportionally if they

are heterogeneous. For example, if the computational resource utilization of subsystem

i is ρi, then ρ1 = ρ2 = ... = ρi = ... = ρN . Profitability of the deployment should
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also be maximized by utilizing the resources equally compared to the cases, when a few

subsystems are over utilized and others are under utilized.

6.5.1.3 SLA Parameters

The proposed approach should also be evaluated with respect to the pre-specified SLA

parameters. For typical web services, these SLAs include response time ri and http re-

quests pending inside the systems qi at a particular time step. For a distributed deployment

of the web services, these SLA parameters should be observed at each individual subsystem

and also as average value at the cluster level. The average response time can be computed

as: ravg =
∑N

i (riαi). Similarly, the average queue can be computed as: qavg =
∑N

i (qi)

N
.

6.5.1.4 Utility Value

The profitability of the distributed deployment should also be improved by using the

proposed distributed control approach. Increase in profitability is possible by lowering the

operating cost (power consumption) and minimizing the SLA violation penalty simultane-

ously. In this chapter, utility of the deployment configuration is defined as negative value

of the operating cost (Equation 6.5) of the deployment. Increment in the operating cost

decreases the utility value.

6.5.2 Robustness Toward Failure

This feature indicates the performance of the proposed approach with respect to the

complete failure of the subsystems or their unavailability during a few time samples. In

an ideal situation, the proposed management approach should be able to detect the node
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failure in the cluster and process the extra workload by increasing its own load share similar

to its relative processing power in the remaining active nodes of the cluster. In addition to

this, the load share of the nodes should also decrease when a new node joins the cluster

reducing the load share on the already active nodes.

6.5.3 Computational Overhead

6.5.3.1 Interaction Between the Coordinator and the Subsystems

In the proposed approach, the communication between the subsystems and the coordi-

nator is used to find the optimal set of the load share αi (where
∑N

i=1 αi ≈ 1) to distribute

the incoming workload among the subsystems. Therefore, the primary overhead of the

proposed approach is the number of iterations I between the coordinator and the subsys-

tems. Additionally, the communication delay in each of these interactions between the

coordinator and the subsystem could also be a potential overhead. Another factor that

can be observed during this interaction is the interaction error vector e, which is used for

calculating SSE. This vector represents the amount of difference between the current con-

figuration (sum of load fractions from all of the subsystems) and the optimal value of the

configuration, when the sum of the load fractions from all of the subsystems is equal to 1.

Therefore, the convergence rate of the interaction error (SSE) towards tolerance value ε

should also be observed.

6.5.3.2 Computational Overhead at each Subsystem

In a control-based management approach, the computational overhead can be measured

as the number of explored states in the controller while determining the optimal set of
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control inputs. These future states are explored by the controller while generating the tree

for all possible future paths. Given that N is the number of subsystems, H is lookahead

horizon steps, U is the control input set, and F is the size of fraction set for α, we can

compute the number of future states in case of exhaustive search strategy [48] as follows.

In the distributed control approach, the total number of states visited SD in each sub-

system for calculating the optimal set of load fraction (αi) and control input (ui) is given

approximately as,

SD = N(FH+1 + |U |H+1) I (6.31)

where, I is the number of iterations performed between the coordinator and the subsystems.

Similarly, in case of a centralized control approach using similar parameters, the total

number of future states explored SC at centralized controller to calculate optimal set of

load fraction (αi) and control input (ui) is given approximately as,

SC = (F +N |U |)H+1 (6.32)

The ratio between the two cases defines the reduction R in the computation overhead

achieved by the distributed control algorithm and is given by.

R =
SC
SD
≈ NH

2 I
(6.33)

For the above approximation, we assumed that F ≈ |N |. Accordingly, the reduction

R depends upon the number of iterations I needed to calculate the optimal set of control
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inputs. However, the factor NH should be significantly higher for a large scale system.

For medium size systems the number of iterations is more significant. This factor can be

decreased to an extent by using higher value of step length, higher value of interaction error

tolerance ε, and better convergent techniques [132] for updating the Lagrange multipliers

β at the “Coordinator”.

6.5.4 Reducing the Computational Overhead in the Proposed Approach

6.5.4.1 Reducing the Number of Interactions

The number of interactions between the coordinator and the subsystems can be reduced

by using a technique that drives the interaction vector toward the optimal value swiftly or

reduces the interaction error SSE among the load shares desired by the subsystems. For

this purpose, two different values of interaction error tolerance (ε = 0.05 or 0.02) are

used to study the convergence rate (see Section 6.6.5). Moreover, a faster convergent tech-

nique [132] was developed to use the gradient in system state, control input, and coordina-

tion parameter to estimate the value of the future interaction vector; however, to reduce the

amount of information transfer between the coordinator and the subsystems, we have not

applied the approach described in [132].

6.5.4.2 Reducing the computations at each subsystem

The look-ahead horizon H indicates the explored depth of control inputs in the future

by the controller during the calculation of the next optimal control input. If the estimation

of future environment inputs are accurate, increasing the value of the look ahead horizon

H can significantly improve the controller performance. However, due to the stochastic
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nature of the environment input, these future estimations are bounded to contain estimation

errors, which will accumulate with increasing look ahead horizon size and will deteriorate

the overall controller performance. Therefore, the look ahead horizon H should be chosen

appropriately in order to balance the controller performance and computational overhead.

In addition to the above methods, the controller performance can also be increased

by applying enhanced tree search techniques (greedy, pruning, heuristics, and A∗), which

reduce the number of explored future states (computational overhead) compared to uniform

cost tree search methods that explore all the possible states [48].

6.6 Case Study: Performance Management of a Distributed Web Service Deploy-
ment

The proposed interaction balance based management approach is simulated by using

Matlab to manage the performance of a web service application that is hosted in a dis-

tributed environment over four computing nodes. Details of the simulations are described

in following subsections.

6.6.1 System Model

The distributed deployment is configured as shown in Figure 6.3. All of the four nodes

are connected to the Coordinator system that also hosts the Dispatcher module and con-

trols a fraction of the incoming workload ω(k) distributed to the subsystems. A Traffic

Estimator module was developed that uses an ARIMA filter (described in next subsection)

to estimate the future arrival rate of the incoming workload. The Coordinator system con-

tains a global queue (Q), which accepts the incoming http requests from the environment
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and forwards them to the dispatcher module. The Dispatcher module forwards the http

requests to the subsystems according to the pre-specified load fractions.

Figure 6.5

Subsystem Level Control Architecture.

The subsystem controller dynamics are shown in Figure 6.5. Each subsystem receives a

fraction of cluster wide incoming http requests at time sample k. The subsystem forwards

its current state [qi(k) ri(k)] to the controller module. Each physical subsystem works

under a finite set of control input frequencies ui ∈ Ui and a discretized value of the load

share αi(k). The Controller module receives current system state [qi(k) ri(k)] from the

physical subsystem, the future workload arrival rate ω̂(k + 1) from the traffic estimator,

and Lagrange multipliers β from the coordinator. The controller module uses the physical
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subsystem model and available control algorithms to obtain the optimal set of control in-

puts [ui(k+1) α(k+1)] using Equation 6.18. The calculated interaction input (load share)

α(k + 1) is sent back to the coordinator to calculate the interaction error.

6.6.2 Forecasting Environment Input

We developed a single estimator module, which monitors the incoming workload ω(k)

and publishes the future workload estimates ω̂(k) to each of the subsystems. This esti-

mator uses an ARIMA filter for estimation, which is similar to the estimator developed in

Section 4.3. We can also implement this estimator inside each subsystem instead of using

a centralized one to reduce the communication for the workload estimation.

6.6.3 Experiment Setup

A web service system consisting of four computing nodes is utilized to demonstrate

the performance of the proposed approach. Simulation settings are shown in Figure 6.6.

These four computing nodes operate on five different discrete frequencies as shown in Fig-

ure 6.6. Additionally, various coefficients used in cost functions are also shown in Fig-

ure 6.6. Nodes 1 and 2 are assigned a higher penalty for power consumption, while Nodes

3 and 4 are assigned a higher penalty for queue size and response time. These settings

reflect heterogeneous computing nodes with different priorities to performance objectives

(queue size, response time, and power consumption) in the cluster. Therefore, Nodes 1 and

2 are expected to minimize power consumption by using lower frequencies, while Nodes

3 and 4 are expected to minimize the node level queue size and response time by using

higher frequencies. All of the nodes are assigned the same penalty value for the global
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queue, so all of the nodes will give equal consideration to global queue while calculating

the optimal values of control inputs. During these simulations, three different synthetic

workloads (see Figure 6.7) of 500 time samples were used, which were based on 1998

Football World Cup web server traffic [56].

Figure 6.6

Simulation Settings.

Performance of the developed distributed-control based performance management ap-

proach is demonstrated in following three simulations with specific objectives as follows:

1. Compare the performance of the proposed distributed control approach over a cen-
tralized control based approach.

2. Investigate the impact of workload and interaction error tolerance value ε on the
performance of the proposed approach in number of interactions between the two
levels and the interaction error convergence.

3. Demonstrate the performance of the proposed approach in the case of subsystem
failures to show the adaptivity of the proposed approach.

More details and results of the simulations are discussed in following subsections.
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Figure 6.7

Workloads W1, W2, and W3 were used During the Simulations.

6.6.4 Simulation-1: Comparing the Performance of Distributed Control Approach
with a Centralized Control Approach

This simulation was performed to compare the performance of the proposed distributed

control approach directly with a centralized approach managing the same deployment. In

this simulation, workload W3 (see Figure 6.7) is used as incoming http requests. Interac-

tion error tolerance ε in this simulation is chosen as 0.05. The centralized control approach

is expected to use model predictive control to compute the set of optimal control inputs u

and α for each subsystem i (ui(k), αi(k)) by using Equation 6.5. The concept of global

queue is not utilized in centralized approach here, as in the case of a centralized controller,

all of incoming workload is transferred to the subsystems for processing at each time sam-
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ple. The cost optimization method that is used to compute the optimal control inputs in the

model-based centralized control approach is presented in algorithm shown in Figure 6.8.

The performance of the proposed approach is compared to the centralized control ap-

proach with respect to the load share values (αi), the applied CPU core frequency (ui), the

queue size (qi), and the response time (ri). The comparative plots are presented in Fig-

ure 6.9 to Figure 6.15.

Results from two separate simulations related to the proposed distributed control ap-

proach and a typical centralized control approach are compared with respect to the follow-

ing performance metrics:

According to Figure 6.9, the proposed distributed control approach distributes the in-

coming workload among the subsystems more uniformly and closer to the subsystem’s rel-

ative processing capabilities in the cluster. In case of the centralized approach, the incom-

ing workload is distributed in random share values that minimize the overall cost function.

Additionally, the distributed control approach utilizes all nodes fairly per their processing

capability, instead of distributing a large fraction of workloads to a few nodes and a small

fraction of workload to others as in the case of the centralized approach. Furthermore, the

distributed control approach adapts to the changes in the workload arrival rate by chang-

ing the load distribution on the nodes in order to maintain their individual utility and total

deployment utility simultaneously, while the centralized approach only considers the total

utility of the system and distributes the incoming load among the subsystems accordingly.

According to Figure 6.10, the distributed control approach applies higher frequencies

on Nodes 1 and 4 compared to the centralized approach, while the distributed approach ap-
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Figure 6.8

Centralized Control Algorithm for Calculating Values of Control Inputs.
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Figure 6.9

Simulation-1: Workload Share Comparison Between the Developed Approach and the
Centralized Approach.

plies lower frequencies on Nodes 2 and 3 compared to the centralized approach. According

to Figure 6.11, the distributed approach has lower values of response time on all the nodes

except on a few occasions at Nodes 1 and 4. The primary reasons for higher values of

response time in the distributed control approach is due to a higher workload processed at

Nodes 1 and 4 (see Figure 6.9) at these time steps. However, the average response time

across all nodes (Node 1 to 4) is still lower in the case of the distributed control approach

as expected.

According to Figure 6.12, queue size at each subsystem follows similar trend as re-

sponse time. According to Figure 6.13, global queue is the amount of workload remaining

at the coordinator if the combined sum of load share fraction demanded by each node is

less than “1”. In distributed control approach, global queue size is mostly zero except in
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Figure 6.10

Simulation-1: Comparison of Applied Frequency (Power Consumption) Between the
Developed Approach and the Centralized Approach.

Figure 6.11

Simulation-1: Comparison of Response Time Between the Developed Approach and the
Centralized Approach.
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the cases of extremely high workload rate. However, this global queue size is still less than

5% of the arrived workload.

Figure 6.12

Simulation-1: Comparison of Queue Size Between the Developed Approach and the
Centralized Approach.

The total load share is sum of the load fractions demanded by each node from the

coordinator during a sample as shown in Figure 6.13. Ideally, this value should be equal to

“1.” However, in the case of an extremely high workload arrival, this sum can be lower than

1 (allowed value is 0.95) in this experiment. This lower than “1” value is useful to maintain

the low value of the local queue size at each node, which has a higher priority compared

to the global queue. Thus, the workload available in the global queue can be processed by

the lightly loaded node in the future, instead of assigning to a extremely loaded node at the

current sample time. In the distributed control approach, the total load share is mostly “1”

except in the cases of an extremely high workload rate. In a few cases, total load share goes
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more than “1” too (max allowed value is 1.05) indicating that nodes show an inclination

toward processing a higher workload to maximize the utility of the cluster.

Figure 6.13

Simulation-1: Global Queue Size (Q) and Total Load Share Processed by all the Nodes in
the Distributed Control Approach.

Number of iterations indicates the number of interactions that have occurred between

the computing nodes and coordinator while computing the optimal solution to maximize

both the operating cost of the deployment and of the computing node. According to Fig-

ure 6.14, this interaction vale is “1,” most of the time. However, in the case of an extreme

arrival rates it varies between “1” to “100” due to different relative priorities at each node

for queue size, response time, and power consumption. In the case of low communication

delay in interaction, the total time spent in multiple interactions can still be lower than the

computation time required to calculate the optimal control inputs while using centralized

approach due to large set of possible control input combinations.
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Figure 6.14

Simulation-1: Number of Interactions Between Coordinator and Nodes.
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Figure 6.14 shows the minimum, average, and maximum value of interaction error at

each sample. These error values indicate the difference between the optimal sum of the

load share (“1”) and the sum of the desired load shares by each node during the interaction

at each sample time. This interaction error increases with the increase in the workload (see

workload W3 in Figure 6.7) due to the conservative nature of nodes to minimize queue

size, response time, and power consumption.

The total utility value for the centralized and the distributed control approach are com-

puted offline by using a centralized cost function (Equation 6.5) and values of the queue

size, response time, and frequencies from both of the simulations at each node. Here,

utility is defined as negative of the cost of operation. The higher the cost of operation,

the lower the utility. According to Figure 6.15, an extremely low value of utility (higher

cost) in the case of the centralized approach is due to the higher queue size and the higher

response time compared to the distributed approach at extremely high workload arrival in-

stances. The utility difference plot is computed to show the improvement in utility values

due to the developed distributed approach. The average improvement in the utility value

((C1− C2)/|C2|) is almost equal to 0.98, which indicates a near 100% improvement. Ad-

ditionally, the CPUtime measured in Matlab in the developed distributed approach shows

improvement of almost 95% with respect to the centralized approach. This improvement

in computation time is due to smaller size of the control input set ([Ui, αi]) at each comput-

ing node in the distributed approach compared to the centralized approach ([U, α]), which

considers all the computing nodes together.
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Figure 6.15

Simulation-1: Comparison of System Utility Between the Developed Approach and
Centralized Approach.

6.6.5 Simulation-2: Impact of the Workload Arrival rate and Error Tolerance Value
on Distributed Control Approach

This simulation was performed to investigate the impact of the workload arrival rate

and interaction error tolerance value on the overhead in computing the appropriate control

inputs that maximize the utility of the deployment. For this simulation, two http work-

loads, W1 and W2 (see in Figure 6.7) of different magnitudes are used. These workloads

are chosen as they represent the boundary of the workload arrival rate that can be easily

processed by the cluster of four computing nodes. Additionally, two different values of

interaction error tolerance ε (T1 = 0.02 and T2 = 0.05) at the coordinator to compute

the Lagrange multipliers β are considered. The primary purpose of choosing different val-

ues of interaction error tolerance is to analyze its impact on the number of interactions

performed between the coordinator and the subsystems. Moreover, a lower value of inter-

action error tolerance ε will ensure that the maximum share of the incoming workload is
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processed inside the cluster at the current time sample. Therefore, four different simula-

tions of combination W1 − T1, W1 − T2, W2 − T1, and W2 − T2 are performed. The

results of the experiments are shown in Figure 6.16, Figure 6.17, and Figure 6.18.

Figure 6.16

Simulation-2: Total Load Share Processed.

According to Figure 6.16, in the case of a low value of interaction error tolerance value

T1, the total load share processed by the subsystems is higher compared to the case of

higher error tolerance T2. Therefore, a lower value of error tolerance will ensure that

the maximum amount of incoming http requests are distributed to the subsystems, which

decreases global queue size substantially.
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Figure 6.17

Simulation-2: Number of Interactions.

166



www.manaraa.com

In the case of a low value of interaction error tolerance value T1, the number of inter-

actions between computing nodes and the coordinator increases substantially to compute

the optimal value of control inputs, even at the same workload arrival rate (W1 or W2) as

shown in Figure 6.17. These results show that error tolerance value should be chosen care-

fully to minimize the number of interactions between the subsystem and the coordinator,

which in turn increases the performance of the proposed approach.

Figure 6.18

Simulation-2: Interaction Error Statistics.

The amount of interaction error (minimum, average, and maximum values during a

time step) increases with the increase in the workload arrival rate as shown in Figure 6.18.

This phenomenon can be explained by the relative priority of the computing nodes to vari-
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ous performance parameters including response time, queue size, and power consumption.

At high workload arrival rate, each computing node tries to maximize its utility function

either by reducing or by increasing the workload fraction. This creates higher amount

of interaction error at the initial few interactions between the subsystems and the coordi-

nator. However, after a few interactions and with the updated Lagrange multipliers, this

interaction error is minimized and optimal control inputs are determined.

According to this simulation, error tolerance value should be chosen carefully with

respect to the incoming workload that increases the total share of the processed workload

while keeping the number of interactions low between the subsystems and the coordinator.

6.6.6 Simulation-3: Evaluation of Robustness Towards Subsystem Failure

This simulation was performed to check the adaptivity feature of the proposed dis-

tributed control approach in case of a computing node failure or addition of a new com-

puting node to the cluster. For this simulation, workload W1 (see Figure 6.19) is used.

According to Figure 6.19, subsystem 2 fails between time steps 70 to 110, when the work-

load arrival rate is decreasing. Subsystem 1 fails between time steps 250 to 290, when

workload arrival rate is increasing. Results of this simulation are show in Figure 6.20

to Figure 6.25.

The load share at Nodes 1, 3, and 4 change once subsystem 2 fails during time step

70 − 110 as shown in Figure 6.20. The extra load share processed by Nodes 1, 3, and 4

are close to their relative processing capacity in the cluster. Similarly, when subsystem 2

comes back online and joins the cluster of subsystems, load shares are restored back to the
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Figure 6.19

Simulation-3: Workload Arrival rate.

the original values. A similar trend is observed when subsystem 1 fails between time step

250 and 290.

According to Figure 6.21, after the failure of subsystem 2, subsystems 1, 3, and 4 do not

change their frequencies initially as the workload is decreasing during time step 70− 110

(see Figure 6.19). However, after the failure of subsystem 1, subsystems 2, 3, and 4 change

their frequency and execute at higher frequencies in order to maintain the deployment

profitability during time step 250 − 290. During the same time step, the response time

is not increased at subsystems 3 and 4. However, the response time at subsystem 2 is

increased because subsystem 2 does not increase its frequency due to subsystem 2’s power-

conservative nature.

After the failure of subsystem 1 during sample time 250− 290, subsystems 2, 3, and 4

increase their frequencies to the maximum value (see Figure 6.21) as the workload arrival

rate is increasing significantly. Due to extreme fluctuations of the workload, response

time levels are increasing in each subsystem; however, due to the relative priorities of the
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Figure 6.20

Simulation-3: Workload Share Processed by Subsystems in the Cluster.

Figure 6.21

Simulation-3: Frequency Values used by the Nodes.
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Figure 6.22

Simulation-3: Response Time at Subsystems.

response time and the queue size of each node, the increment in response time is lower on

subsystems 3 and 4 while higher on subsystem 2.

According to Figure 6.23, the queue size shows a similar trend as the response time

during the simulation. Figure 6.24 shows that the global queue size is increased at the

time step 70 and 250 when subsystems 2 and 1 fail. However, the global queue size is back

to a minimum as soon as the active subsystems adjust their load shares.

The number of interactions between the coordinator and the subsystems 1, 3, and 4 are

unchanged (see Figure 6.25) when subsystem 2 fails during time step 70− 110. However,

the number of interactions are increased when subsystem 1 fails during time step 250−290

due to increase in the incoming workload.

According to Figure 6.25, maximum error in the interaction variable is increased ex-

tremely when subsystem 1 fails during time step 250 − 290 compared to the time step

171



www.manaraa.com

Figure 6.23

Simulation-3: Queue Size at Subsystems.

Figure 6.24

Simulation-3: Global Queue Size (Q) and Total Load share Processed by Subsystems.
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Figure 6.25

Simulation-3: Global Queue Size and Total Load share processed by Nodes.
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70 − 110. It again shows the impact of the workload arrival rate on the interaction error

convergence rate as discussed in Section 6.6.5.

6.7 Summary

In this chapter, a distributed control-based management approach is presented that uti-

lizes the interaction balance principles used for control of large scale systems. The pro-

posed approach efficiently manages the service level agreements of a web service deploy-

ment by minimizing the response time and power consumption simultaneously. According

to the various simulations presented in this chapter, the developed distributed control ap-

proach maintains the SLAs of the deployed web service while increasing the utility mea-

surement of the deployment by 98% and reducing computational overhead compared to a

centralized control approach. Additionally, the proposed approach shows robustness to-

wards nodes’ failures in the cluster. We also investigated possible methods for improving

the performance of the proposed management approach by reducing the overheads and

increasing the convergence rate towards the optimal control inputs.
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CHAPTER 7

APPLICATION OF THE DISTRIBUTED CONTROL APPROACH AS A

COMPONENT BASED DEPLOYMENT

In this chapter, a component-based design of the developed distributed control system

is presented, where system administrators can design and configure the distributed per-

formance management system according to the specifications of the deployed application.

This chapter also introduces the component modeling tool (GME) and a universal data

model (UDM) packages that provide a programmable interface to access component mod-

els. Additionally, the development, deployment, and configuration strategy for developing

a component-based control structure is introduced in this chapter. The proposed strategy is

then applied for designing a distributed performance management system for a web service

deployed in distributed environment.

7.1 Preliminaries

7.1.1 Generic Modeling Environment

The Generic Modeling Environment (GME) [14] is developed at Institute of Soft-

ware Integrated System (ISIS), Vanderbilt University. GME is a windows-based, domain-

specific, model-integrated program synthesis tool for creating domain-specific and multi-

aspect models of large-scale engineering systems [14]. GME is designed to work with
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various different engineering domains. GME uses concepts of hierarchy, multiple aspects,

sets, references, and constraints to develop large scale complex system models [105]. Ap-

plication model design in GME can be performed in the following two stages:

1. Meta-Model Development: At this stage, domain architects design the basic meta-
model of the system, various modules inside the system, their connectivity, con-
straints, and visualization aspects.

2. Application Model Development: At this stage, domain engineers of the application
can utilize the meta-model created in the previous step for defining the deployment
plan or simulation configuration of the application. Domain engineers can utilize the
meta-model just by knowing the connectivity pattern of the application, while incor-
rect connections can be restricted (or validated) through the constraints specified in
the meta-model itself.

Figure 7.1

GME Architecture.

GME has a component based architecture as shown in Figure 7.1 [14]. According

to Figure 7.1, GME architecture has three main components:
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1. Storage: This layer contains multiple components related to the various storage for-
mats. Currently, only binary and XML based storage are supported.

2. GME Core: This layer contains two components. GME Meta, which defines the
modeling paradigm for target application domain and GME Model, which imple-
ments the modeling concepts of the given modeling paradigm for a specific applica-
tion deployment setting.

3. User Interface: This layer represents the components of GME that interacts with
users. Add-Ons represent different events during the editing process, while Con-
straint Manager and Interpreter are responsible for checking constraint validation
and interpreting the model respectively. GME Editor and Browser are used for visu-
alizing and creating the models.

GME contains multiple modeling concepts to create meta-model of engineering sys-

tems. These modeling concepts can be listed as follows:

• Folder: Folders contain different sections of the modeling project, which are related
logically. Each project has at least one folder, which is named as the Root folder.

• Models: A model is an object that contains other objects or elements, which can be
manipulated if required.

• Atom: An atom is the most basic and elementary object, which can not contain
another object in it. It is used to represent small entities that cannot be divided
further into smaller atoms.

• Model Hierarchy: It represents the containment relationship among the objects. Ac-
cording to this, an object must have one parent, which should be another model.

• Aspects: An aspect is defined by the parts of the model, either visible or hidden in it.

• Connection: A connection expresses the relationship between the objects within the
same model.

• References: A reference expresses the relationship between objects at different lev-
els or in different models. It is similar to the concept of pointers in programming
languages, such as C or C++.

• Set: A set represents the relationship among a group of objects in the same folder or
the same aspect. Each object can belong to one or multiple sets.

• Attributes: An attribute shows the property of an object as test, integer, double,
boolean and enumerated.
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• Constraints: Constraints represent the rules specific to the model composition and
the project specifications.

For an application domain, the model paradigm is created as a composition of the above

listed modeling concepts.

Figure 7.2

Computing System Dynamics Meta-Model in GME.

The domain-specific modeling toolkit GME [14, 105] is utilized earlier for creating ap-

plication domain specific visual modeling environments. In GME, an application domain

specific deployment model can be configured and developed by using the meta-level model

specification for the same domain. The meta-modeling paradigm contains all the semantic,

syntactic, and presentation information for the family of application. The GME can be
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utilized by an administrator to create a different deployment settings for the application of

the same family in a visual modeling environment. Furthermore, GME components are de-

veloped to interface with various simulation tools (MATLAB), configuration files (XML),

or code generation utilities (Microsoft Visual Studio) for different programming languages

(e.g., C++, Visual Basic, C#, Python etc.) per the desired output format.

In this dissertation, the meta-models of various components and the modules of the

distributed control structure are developed by using GME. These modules are deployed in

distributed manner to function as distributed control structure. An example of the comput-

ing system meta-model is presented in Figure 7.2.

7.1.2 Universal Data Model

The universal Data Model (UDM) package [36] provides programmable access to the

GME domain models. The UDM package is used to generate a C++ programming interface

from the GME meta-models. These programming interfaces are utilized by the domain

engineers for interpreting the developed application domain models and generating either

the dynamic linked libraries (*.dll and *.so) or the programs to generate the source code.

UDM package is best suitable for cases when the data is either represented through object

oriented design or through xml format. The primary components of the UDM package are

described in Figure 7.3 [113].

The UDM framework consists of five main components:

1. GME/UML Interpreter: It is used to generate XML data files from the GME meta-
models developed by domain architects.
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Figure 7.3

Components of the UDM Framework.

2. UDM Programs: These programs convert generated XML files to the meta-model
dependent interface files of UDM. These files include C++ header file, C++ source
file, XML document type definition file, and XML schema definition file.

3. UDM Headers and Libraries: These headers and libraries are linked to the user
programs for utilizing UDM data types and utility programs.

4. UDM Utility Programs: These programs are used to manipulate the UDM data.

5. UDM Back End: UDM back end contains various generic APIs, which are used
by the UDM programs. These generic APIs implement model objects in various
forms: in memory (MEM), in XML dom tree (XML), as GME objects (MGA), and
as generic binary objects (CORBA).

Programming APIs for GME meta-models are generated from the UDM package in the

following steps.

1. A UML based meta-model is created in a GME/UML environment.

2. The UML meta-model information is converted to an XML file using the GME in-
terpreter supplied with the GME/UML environment.

3. The generated XML file is passed as input to the UDM.exe program in order to
generate the C++ header and the API files.
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4. The users create a project in Microsoft Visual Studio and include these header and
API files with other UDM header files.

5. The users develop an interpreter source file in C++ to read a specific domain model
(objects) of the GME meta-model. Any changes in the GME meta-model requires
the execution of all of the previous steps again.

In this dissertation, the UDM package is utilized for generating a C++ programmable

interface to access the model objects in the GME application domain model related to

the distributed control approach. These C++ interface files are further used to create and

configure the control structure with deployment configurations related to each node.

7.2 Component-Based Control Structure: Development, Deployment, and Configu-
ration

The primary idea of developing a component-based control structure is to divide a con-

troller into very small reusable components that can be again assembled together by using

interconnections and interaction rules to form the same controller. Furthermore, these

components can be developed by using different approaches, rearrangements, and recon-

figurations to create a controller with the same functionality. Moreover, small parts of the

controller (assembly of a few small components) can also be reused for a different func-

tionality by rearranging the components present inside it. However, the specifications of

external ports, which are connected to other parts of the controller will remain unchanged.

For the deployment of the component-based control structure, each small component

should be first developed, then connected with other components, and finally configured

according to the deployment requirement. In the case of distributed controllers, interaction

rules, network interfaces, and communication protocols should also be specified in the
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controller at each node. A similar idea has already been implemented for deployment and

configuration of component-based distributed applications [10].

A component-based control structure deployment strategy is proposed in this disser-

tation by combining GME and UDM for designing the distributed control structure de-

ployment plan. This development, deployment, and configuration activity is shown in Fig-

ure 7.4. This entire process is completed in three different phases, which are described in

following subsections.

7.2.1 Development Phase

In the development phase, the control structure is developed by using the meta-model

specifications (provided from the system architects) related to the various components and

components’ assembly to perform a specific function. At this phase, these small compo-

nents are developed in a generic manner to process different types of inputs. These compo-

nents can be reconfigured (or rearranged) as a module to perform different functions. This

development phase consists of following four tasks:

7.2.1.1 Meta-Model Development

The meta-model development for the control structure is performed by the domain

architects of the application domain. This process is performed in a top down approach,

where a large distributed control system functionality is decomposed hierarchically in their

sub-functionalities executing at each subsystem. By decomposing the functionality, the

control structure is also decomposed into an assembly of control functions and further each

control function is decomposed into an assembly of small components upto the smallest
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Figure 7.4

Component-Based Control Structure Deployment Plan Generation Process.
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function possible. At this stage, the interaction rules and interconnects between different

components are expressed in the meta-model specifications. In the case of distributed

controllers, the network interface and communication protocol options are specified in a

generic manner, independent from the actual method used in final deployment activity.

7.2.1.2 Interface Definition File Creation

The interface definition files [28] define the data types of different attributes of each

component and the information variables shared between the components in a manner

independent of the implementation language (e.g., C, C++, Java). These interface defini-

tion files are written in interface definition language (IDL). IDL files use various common

data types (long, double, boolean, sequence, etc) and user defined data types (e.g., enum,

struct). These data types are shared on an interconnection among multiple components (or

nodes), where each side of the interconnect may or may not be implemented in the same

programming language.

These IDL files are created manually by using meta-model of various components de-

veloped in the previous task. Additionally, IDL files contain implementation language

specific bindings, which are generated by using IDL compilers. These IDL compilers

translate the IDL file to the implementation language specific headers, which are included

by the developers in order to implement a component in a specific programming language.

A sample IDL file is shown in Figure 7.5.
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Figure 7.5

Example of an Interface Definition Language (IDL) File.

7.2.1.3 Component Specification and Development

In this task, system developers implement each component in a high level program-

ming language according to the specifications in meta-models and by using the IDL files

generated in the previous task in order to form a component library. A component can

also be developed using multiple approaches according to the specifications provided from

the meta-model. The control structure can choose among these implementations according

to the QoS requirements from the deployed controller or node specific requirements. For

example, an environment estimator can be developed using Kalman and ARIMA filters.

During this task, different small components are also developed to perform very generic

operations, such as sorting, searching, estimating, and filtering.
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7.2.1.4 Component Packaging as Module and Framework

In this task, different components are grouped together and connected among them-

selves to perform a meaningful functionality. These connections and the assembly of com-

ponents are performed in accordance to the meta-model specifications. These components

can be grouped in two ways: Monolithic (compiled code) and assembly (group of compo-

nents). In monolithic implementations, packages are created as dynamic linked libraries

and cannot be divided further into components for rearrangement. In assembly implemen-

tations, each component inside the group can still be re-arranged or re-configured accord-

ing to the requirement. These groups of components form a module, which is deployed at

each computing node with a specific configuration according to the deployed application.

7.2.2 Target System Configuration Phase

The target system is considered as the application, which needs to be controlled through

control structure at each node. In this phase, deployment information of each instance of

the application at each computing node is configured in an “Application Settings” structure,

which is developed by the system architects during the development of the meta-model of

the control structure. This deployment information of the application include the physical

node information (cluster name, node name), virtual node information (host VM node),

system utilization logging information (type of system resource with their correspond-

ing logging mechanism), application performance logs (performance log file or message

queue), and system performance tuning options (CPU frequency, CPU cap, etc). In ad-

dition to this information, the communication methods available between the computing
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nodes should also be specified in the application setting. These communication methods

will be utilized by the control structure to communicate among the nodes.

7.2.3 Deployment Phase

After the development and packaging of the control structure, it is used for the deploy-

ment at each node according to the application settings by using a deployment plan. This

deployment plan is generated by a “Deployment Planner” module as shown in Figure 7.4.

This complete deployment activity is performed in two steps: Deployment Plan Generation

and Deployment Preparation.

7.2.3.1 Deployment Plan Generation

During the deployment plan generation, application deployment settings and control

structure is compared for matching and creating a configuration plan that specifies the

placement of different modules of the control structure at each node and their interaction

with the deployed application. Moreover, the deployment planer generates the configura-

tion plan for each component in the control structure according to the specifications of the

application settings. These settings include logs for measuring the system performance,

control input options according to the available tuning options of the computing node,

and communication module related information. In case of multiple implementations of a

component in the component library, the most appropriate implementation is used for the

deployment plan per application deployment setting and desired QoS specifications.
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7.2.3.2 Deployment Preparation

After generating the deployment plan, the control structure code is moved to the actual

computing node, configured, and launched in parallel to the application. This deployment

activity takes place in the following steps:

• Preconditioning of the Deployment: In this step, the packaging of the control struc-
ture as different modules is performed according to the application deployment re-
quirements. This packaging activity follows the constraints specified by the control
structure meta-models.

• Installation of the Control Structure: At this step, the source code (or compiled
binary) of the control structure module is moved to the actual computing node and
placed inside the appropriate directory. In the case of the source codes, they need to
be compiled after setting up the required environment variables.

• Pre-configuration: At this step, the default configurations of the computing nodes
are performed according to the application deployment settings or control structure
specifications. This activity can be performed manually or can be left for the control
structure once it launches.

• Control Structure Launch: As a final step of the deployment, the control structure
on each node is launched by using NFS mounted network scripts.

This component-based approach is applied for developing a distributed control struc-

ture for managing performance objectives of a distributed web service deployment.

7.3 Case Study: Distributed Control Structure Design and Deployment by using
Component-based Approach

The distributed control structure developed in Chapter 6 is combined with the component-

based approach developed in Section 7.2 of this chapter for managing distributed web ser-

vices deployed in a virtualized environment. The distributed web service considered here,

contains performance specifications similar to “Daytrader”, which was used in Chapter 3

of this dissertation. This distributed control structure is designed as follows:
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• Subsystem level controllers and regional coordinators are decomposed into multiple
modules based on their functionality. These modules are further decomposed into
small components with special functions. Additionally, some components are iden-
tified, which require multiple implementations. For example, estimator components
are developed using ARIMA and Kalman filter approaches.

• Meta-models for each module of the controller and their components are developed
by using GME. The interaction among these components as well as among modules
are also specified at this step. In addition to this, meta-models for the application
deployment configurations are also developed.

• Each of these components are developed in a high level programming language
(preferably C++).

• The domain application model of each module from the control structure is devel-
oped by using GME as shown in Figure 7.6.

• Application deployment settings are configured in the domain application model of
the deployment record structure.

• C++ code for APIs are generated by using GME meta-models with UDM packages.
Additionally, the deployment planner module is also developed by using C++ header
APIs generated from UDM. The deployment planner module uses these APIs to
interpret the application models.

• The deployment planner module is executed to generate a deployment plan with the
source code of various modules developed in the distributed control structure by
using the control structure application model and application deployment settings.

• The distributed control structure is deployed after performing pre-deployment tasks
and by using NFS mounted scripts.

All of these tasks are described in detail in the following subsections.

7.3.1 Control Structure Component Design

The subsystem controller described in Chapter 6 (Section 6.6.1) is decomposed into

different modules based on their functionalities for developing a component based control

structure. These modules and their different components are shown in Figure 7.6 and

Figure 7.12.
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Figure 7.6

Key Components of the Control Framework at each Node.
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7.3.1.1 Environment Module

The environment module captures the incoming workload from the end users toward

the web service deployment at each node. This module receives the workload arrival rate

by using environment input sensors and uses the environment model coupled with esti-

mation libraries to estimate the expected environment input for the future. This estimated

value is forwarded to the System Module.

7.3.1.2 System Module

The system module captures the dynamics of the deployed web service with respect

to the system resources. The system module executes sensors related to system resources

(CPU, disk, memory, etc.) and hardware health (motherboard, CPU fan, etc). This module

captures the current system resource utilization level and future availability of the system

resources. All of this information is transmitted to the Controller Module.

7.3.1.3 SLA Module

The SLA module keeps track of the SLA compliance for deployed application at the

node. It contains information of the SLA between the service provider and service user

in the distributed environment. It periodically sends the current SLA compliance to the

controller module. Furthermore, this module is also responsible for updating the new SLA

compliance policies on the controller module.
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7.3.1.4 Controller Module

The controller module receives the SLA compliance information from the SLA module

and system resource level from the system module. In the case of an SLA violation (or pos-

sible violation), the controller module computes the optimal control input from available

control options at the node, which will ensure SLA compliance on the node and minimizes

the cost of system operation through utility function. The controller module also contains

a copy of the system model dynamics, system state, control input constraints, and search

optimization library. The controller module forwards the updated control input value to the

actuator module.

7.3.1.5 Actuator Module

The actuator module contains an actuator library that consists of various actuators

developed for each type of tuning options available at the node. These tuning options

include CPU core frequency, CPU cap share, load balance ratios, and virtual machine

(on/off/pause/suspend) commands.

7.3.1.6 Regional Coordinator

The regional coordinator module is executed at one of the nodes in the region (or clus-

ter) of N nodes. Regional coordinator is chosen as the leader of the region (see Sec-

tion 5.4.4 for more details on the regional leader). Here, regional coordinator coordinates

among the nodes to calculate the solution of the infrastructure level optimization problem

as described in Section 6.4 of this dissertation.
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7.3.1.7 Membership Manager

The membership manager module is executed to keep track of the regional coordinator

of the region. Various features and functions of the membership manager are already

described in Section 5.4.7 of this dissertation.

7.3.1.8 Local Manager

The local manager module is executed at each node for two purposes: First, it keeps

track of all of the other modules with their HEARTBEAT information. If any of these

modules terminate due to fault, local manager will restart another instance of that module

as soon as it discovers the failure. Second, it maintains connection with the membership

manager module to keep track of the regional coordinator.

7.3.2 GME Meta-Model Development

In this step, meta-models of different modules and their components are developed

in GME. These meta-models contain information related to different components of the

modules, input/output ports, communication modules, sensors started by the modules, user

defined functions, module level constants, and the actuators if any. In addition to compo-

nents, meta-models for various estimators, actuators, sensors, and communication models

are also developed. For example, meta-models of the controller module and its component

(local controller) are shown in Figure 7.7 and Figure 7.8. According to Figure 7.7, the

controller module contains an instance of local controller, multiple sensors, multiple com-

munication modules to interact with other modules, user defined functions, a copy of the

current system state, and input/output ports. Similarly, according to Figure 7.8, the local
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controller contains the controller information structure, the node deployment information,

different utility information maps, SLA constraints, the system model reference, and the

system state.

Figure 7.7

Controller Module Meta-Model in GME (see Figure 7.6).

7.3.3 Component Library Development

At this step, different components of the control structure are developed in a high level

programming language (C++). These components are developed using specifications in

their meta-models. Various types of monitoring sensors, actuators, communication mod-

ules, estimators, and optimization functions are implemented at this step. Estimators and

optimization library components contain multiple implementations of the same function-
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Figure 7.8

Local Controller Meta-Model in GME. (Present Inside Controller Module Meta-Model
in Figure 7.7).

ality, which provide flexibility to the administrators to choose the suitable implementation

according to the deployed application dynamics and computational requirements. For ex-

ample, estimators contain both ARIMA and Kalman filter implementations, while the op-

timization function contains exhaustive, greedy, A*, and pruning tree search methods for

computing optimal control inputs.

In this dissertation, a component library is developed in C++ by using a template-based

approach that provides the flexibility of processing user defined data types. Addition-

ally, the monitoring sensors and actuators are developed as an ARINC-653 process, while

communication modules are developed as OpenSplice DDS communication modules as
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described in Chapter 5. However, these components can be implemented through other

approaches too in future and added to the component library.

7.3.4 Control Structure Domain Application Model

At this step, the application model from the control structure meta-model is created as

shown in Figure 7.6. This application model is created to mimic a representative deploy-

ment of the control structure at each node, regional coordinator, and membership manager.

This application model contains information regarding the types of sensors each module

contains, communication module configuration for interaction among the modules, dif-

ferent components, and user defined functions of the modules. For example, the domain

application model of the environment module is shown in Figure 7.9. The environment

module contains a “Sensor” and an “Environment Model” as shown in Figure 7.9. The “En-

vironment Model” further contains an “Environment Model Structure” and an “ARIMA”

estimator. “ARIMA” estimator further contains an “Estimate” function, previous data (P1

and P2), and history data (h1).

7.3.5 Application Deployment Configuration

At this step, the deployment configuration of the web service is configured in the ap-

plication model of the “Deployment Record” as shown in Figure 7.4 (see Application Set-

tings). These settings include the computing node related information (cluster name, node

name), and various logging information related to the system performance, system health,

and application performance logs. These settings also include the various tuning options

(CPU frequency, CPU share, etc.), their values or valid range, and their target resource
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Figure 7.9

Domain Application Model of the Environment Module.
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options (CPU core, VM node, etc). These application settings are used to configure and

initialize various components of the control structure. This mapping of application settings

with the control structure components is described in next few subsections.

7.3.6 Deployment Planner Module Development

The deployment planner module is developed in this dissertation by using the UDM

package with Microsoft Visual Studio-2010 bindings. As described in Section 7.1.2, first

C++ header and implementation APIs are generated through UDM package and meta-

models of the control structure. These header and APIs are then included in a Microsoft

visual studio project. These APIs provide programmable access to the application models

of the distributed control structure and deployment configuration developed in previous

Section 7.3.4 and Section 7.3.5, respectively. Another C++ source file, “ControllerIn-

terpreter” is developed that interprets the application models using C++ APIs and UDM

headers. This interpreter file can recursively read all of the object models, objects con-

tained inside them, their different attributes, and the values of these attributes. A C++

code snippet of this interpreter source file is shown in Figure 7.10 and Figure 7.11. The

procedure to generate the deployment plan is described in next subsection.

7.3.7 Deployment Plan Generation

During this step, application deployment settings are compared with the control struc-

ture application models and a deployment plan is generated, which specifies the placement

of different modules of distributed control structure at each computing node and interaction
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Figure 7.10

Code Sample from UDM-C++ Interpreter to generate the Source code with Deployment
Settings for the Distributed Management System Deployment.
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Figure 7.11

Code Sample from UDM-C++ Interpreter... (Continued from Figure 7.10).
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of these modules with modules hosted at other nodes. This deployment plan is generated

in following sequence:

1. Application Deployment Settings: Application deployment settings are read recur-
sively for each node in each of the specified cluster and stored in the “Deployment
Map” with “node name” as the key.

2. Configuration of Control Structure Module for Deployment Settings: For each node
present in the “Deployment Map”, each of the modules from the control structure is
read and attributes from the “Deployment Map” are copied to the appropriate vari-
ables in control structure. For example, “Control Input” information for the node is
copied from the “Deployment Map” to the controller module’s “control input” data
structure. Similarly, information regarding application performance logs is trans-
ferred from “Deployment Map” to the web application and SLA monitoring sensors
in various modules.

3. Configuration of Control Structure Modules: Control structure modules at each node
are configured according to the settings of the modules. At this point, if multiple im-
plementations of the same component are present in the component library, the most
suitable component implementation can be chosen per the application characteristic.
For example, we chose the Kalman filter based implementation of the web applica-
tion for estimating the web service system parameters, instead of the ARIMA filter
based implementation.

4. Code Generation: The deployment planner generates the C++ source files that con-
tain ”Main” function for each of the modules in the control structure, and places
them in folders arranged with the cluster name and the node name.

7.3.8 Control Structure Deployment

After generating the deployment plan with the configured code of the distributed con-

trol structure, it is deployed over each of the nodes that host an instance of the web service

application. This deployment process is performed in following sequence:

1. Installation: At first, the source code (and compiled libraries) of the distributed con-
trol structure are moved to the respective computing nodes and placed under the
appropriate directories.

2. Pre-Configuration: The computing nodes are configured according to the default
configuration of the application deployment and control structure. In this disserta-
tion, this step is used to set up appropriate DDS communication domains. In the case
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Figure 7.12

Hierarchical Arrangement of the Distributed Performance Management System
Deployment.
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of control structure related settings, this step can either be performed manually by
the administrator or control structure modules can perform this procedure according
to the initial values of the attributes.

3. Control Structure Launch: Finally, the distributed control structure is launched at
each node by using NFS mounted scripts. After the launch, the control structure
comes online, and configures itself for communication among modules at each node
and with controllers executing at the other nodes. In addition to this, monitoring
sensors start monitoring the different system parameters, application performance,
and SLA compliance of the web service.

A schematic diagram of the developed distributed performance management system is

shown in Figure 7.12. According to Figure 7.12, web service is deployed in a cluster of N

computing nodes (Node-1 to Node-N ). These computing nodes cooperate with each other

through regional coordinator to compute the optimal values of control inputs according

to the distributed control algorithm described in Chapter 6. Additionally, a membership

manager is also deployed in the region to track the availability of regional coordinator

according to the procedure described in Chapter 5.

7.4 Summary

In this chapter, a component-based design of the distributed control structure is pre-

sented based on model integrated computing practices. Detailed information of the generic

modeling environment (GME) and the universal data model (UDM) package are also intro-

duced in this chapter. A case study of applying the developed component-based approach

to a distributed web service deployment is presented in detail that includes meta-model

development, domain model development, deployment plant generation, and distributed

control structure launch on each node.
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CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1 Conclusions

In this dissertation, we developed a model-based autonomic performance manage-

ment system for managing distributed enterprise systems and the underlying web service.

Model-integrated computing practices are used together with component-based approach

for the development of a generic distributed control-based performance management sys-

tem. The developed performance management system can be applied to a wide range of

enterprise applications hosted in a traditional data center environment or in a cloud com-

puting infrastructure. This is done in following steps: developing standard components for

each functionality (monitoring or control) of the typical management approach, configur-

ing the components according to the application settings, and deploying the components

in a distributed environment according to the deployment settings of the application. This

component-based approach facilitates the reusability of the developed monitoring sensors,

control modules, control algorithms, and application performance models that increases

the productivity of the researchers, while decreasing the application specific development.

This dissertation introduces a systematic approach for developing performance models

of a multi-tier web service within a certain accuracy. According to a set of experiments,

the developed web service performance model tracks the performance behavior of the web
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service with high accuracy in dynamic operating environment. Additionally, the compu-

tational nature of the incoming http requests is also computed by using an exponential

Kalman filter. This chapter also proposes a lookup table-based physical server power con-

sumption model that uses CPU core frequency and CPU utilization as the key to determine

the corresponding power consumption value.

The developed web service performance model is utilized by a model predictive con-

troller for minimizing the power consumption and maintaining the QoS specifications of

the web service deployed in a virtualized environment. According to the experiments, the

predictive controller can enhance the system performance and achieve an 18% power sav-

ing while maintaining the response time per SLA specifications. Additionally, the devel-

oped lookup table-based power consumption model predicts the overall power consump-

tion of the physical server with 95% accuracy. Furthermore, the experiments demonstrate

that the developed predictive-controller coupled with application performance model has

low overhead for CPU and memory resources.

A real-time and fault-tolerant distributed monitoring system “RFDMon” is also in-

troduced, which uses data centric publish-subscribe mechanism for sharing the measure-

ments. This monitoring system utilizes avionics operating system specifications for fault

isolation and restricting computational resource utilization. “RFDMon” can monitor the

system resources, hardware health, computing node availability, scientific application ex-

ecution state, and web service performance in a comprehensive manner. Moreover, this

monitoring system provides scalability in number of monitored nodes because it is based

upon data centric publish-subscribe mechanism, which is scalable in itself. In this mon-
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itoring system, new sensors can be added dynamically without restarting the monitoring

system. This monitoring system is fault-tolerant with respect to the faults due to partial

outages. It can also self-configure (Start, Stop, and Poll) the sensors and can be applied in

heterogeneous cluster environment.

A distributed control-based performance management approach is developed that can

manage a general class of web services deployed in the distributed computing environment.

The applicability of the developed management approach is demonstrated by applying it on

the web service hosted in a distributed environment for power and response time manage-

ment. According to the experimental results, this approach manages the web service within

SLA requirements and minimizes power consumption. Additionally, this nodes provides

scalability for increasing the number of levels in hierarchical arrangement of computing

nodes hosting application instances. Moreover, this approach is fault-tolerant with respect

to the computing node failures in the deployment.

The distributed performance management system is designed as a component-based

performance management system by applying model integrated computing (MIC) method-

ologies. MIC tools (GME and UDM) are utilized for developing the components of the

distributed control structure in a modular manner and generating the deployment plan of

the distributed control structure. The distributed control structure components are config-

ured, deployed, and launched according to the application deployment settings specified

by the system administrator.
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8.2 Future Research Directions

This dissertation has presented a comprehensive step by step approach for develop-

ing an autonomic performance management system for enterprise applications and web

services hosted in a distributed environment. This performance management system is de-

veloped by using very general design concepts to extend its applicability for a wide range

of systems and applications. We demonstrated the applicability of developed management

system to a specific web service deployment. However, the research contributions of this

dissertation can be further extended as follows:

8.2.1 Extended Component Library

In this dissertation, a large number of sensors, control algorithms, and estimators are

developed as part of the component library. However, these component implementations

are the ones applied to a limited class of web services utilized during the dissertation.

This component library can be enriched by developing new sensors, control algorithms,

and estimators to extend the coverage of the developed approach for a larger set of web

services systems and other applications.

8.2.2 Fault Diagnosis Module

The developed monitoring system “RFDMon” helps in visualizing the system resource

utilization, hardware health, and scientific application process state on various computing

nodes. Therefore, an administrator can easily find the location and possible causes of

the faults in the infrastructure. To make this fault identification and diagnosis procedure
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autonomic, a fault diagnosis module can be developed that can detect or predict the faults

in the infrastructure by observing and correlating measurements from various sensors.

8.2.3 Multi-Level Distributed Control Approach

The distributed control structure, developed in this dissertation, can be extended to a

multi-level hierarchical control structure by using the same interaction balance approach,

where computing nodes are arranged in a hierarchical manner consisting of multiple levels

for efficient management of the application instances. This efficient management will be

performed by decomposing the overall control problem of managing the infrastructure

into various different control problems of managing different modules, and then further

managing the application instances at each computing node. Node level controllers solve

each subsystem problems while satisfying the constraints posed by the controller working

at immediate higher level in the hierarchy.
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